Article

Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples

Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, MD 20892, USA.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 06/2007; 356(4):1017-23. DOI: 10.1016/j.bbrc.2007.03.087
Source: PubMed

ABSTRACT Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminated the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients.

0 Followers
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substantive and significant advances have been made in the last two decades in the characterization of human immunodeficiency virus (HIV) infections using molecular techniques. These advances include the use of real-time measurements, isothermal amplification, the inclusion of internal quality assurance protocols, device miniaturization and the automation of specimen processing. The result has been a significant increase in the availability of results to a high level of accuracy and quality. Molecular assays are currently widely used for diagnostics, antiretroviral monitoring and drug resistance characterization in developed countries. Simple and cost-effective point-of-care versions are also being vigorously developed with the eventual goal of providing timely healthcare services to patients residing in remote areas and those in resource-constrained countries. In this review, we discuss the evolution of these molecular technologies, not only in the context of the virus, but also in the context of tests focused on human genomics and transcriptomics.
    08/2012; 1(8). DOI:10.1038/emi.2012.15
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The risk of transferring blood-borne infections during transfusion is continually increasing because of newly emerging and reemerging viruses. Development of a rapid screening method for emerging viruses that might be transmitted by transfusion is required to eliminate such pathogens during blood donor screening. Owing to increased use of human materials in organ transplants and cell therapy, the risk of donor-transmitted viral infections is also increasing. Although nucleic acid amplification technology (NAT) is dedicated to blood screening, a small, convenient detection system is needed at the laboratory and hospital level. Study Design and Methods We developed a new pathogen detection system that can detect multiple viruses simultaneously, using originally designed degenerate polymerase chain reaction primers to amplify a wide range of viral genotypes. Amplified samples were identified using a DNA microarray of pathogen-specific probes. ResultsWe detected very low copy numbers of multiple subtypes of viruses, such as human hepatitis C virus (HCV), human hepatitis B virus (HBV), human parvovirus B19 (PVB19), and West Nile virus (WNV), using a single plate. We also detected all genotypes of human immunodeficiency virus (HIV) but sensitivity was less than for the other viruses. Conclusion We developed a microarray assay using novel primers for detection of a wide range of multiple pathogens and subtypes. Our NAT system was accurate and reliable for detection of HIV, HBV, HCV, PVB19, and WNV, with respect to specificity, sensitivity, and genotype inclusivity. Our system could be customized and extended for emerging pathogens and is suitable as a future NAT system.
    Transfusion 04/2013; 53(10). DOI:10.1111/trf.12193 · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteases mediate a wide variety of biological events and have a critical role in the development of many diseases. Protease detection methods can be hindered by the limitation of assay safety, sensitivity, specificity, time constraints and ease of on-site analysis. Notably, the implementation of various detection methods on biosensing platforms translates them into practical biosensing applications. Currently, the detection of prostate cancer and AIDS at the earliest occasion is one of the major research obstacles. Therefore, recent advances focus on the development of portable detection systems toward point-of-care testing. These detection systems should be highly sensitive and specific for the detection of their prognostic biomarkers, such as the prostate-specific antigen and HIV load assay for prostate cancer and AIDS, respectively. These methods will also facilitate decision-making on a treatment regimen.
    Expert Review of Molecular Diagnostics 09/2013; 13(7):707-18. DOI:10.1586/14737159.2013.835576 · 4.27 Impact Factor