Article

The balance between the novel protein target of wingless and the Drosophila Rho-associated kinase pathway regulates planar cell polarity in the Drosophila wing.

School of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
Genetics (Impact Factor: 4.39). 07/2007; 176(2):891-903. DOI: 10.1534/genetics.106.069021
Source: PubMed

ABSTRACT Planar cell polarity (PCP) signaling is mediated by the serpentine receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling utilizes Drosophila Frizzled 2 (DFz2) as a receptor and also requires Dsh for transducing signals to regulate cell proliferation and differentiation in many developmental contexts. Distinct pathways are activated downstream of Dsh in Wg- and Fz-signaling pathways. Recently, a number of genes, which have essential roles as downstream components of PCP signaling, have been identified in Drosophila. They include the small GTPase RhoA/Rho1, its downstream effector Drosophila rho-associated kinase (Drok), and a number of genes such as inturned (in) and fuzzy (fy), whose biochemical functions are unclear. RhoA and Drok provide a link from Fz/Dsh signaling to the modulation of actin cytoskeleton. Here we report the identification of the novel gene target of wingless (tow) by enhancer trap screening. tow expression is negatively regulated by Wg signaling in wing imaginal discs, and the balance between tow and the Drok pathway regulates wing-hair morphogenesis. A loss-of-function mutation in tow does not result in a distinct phenotype. Genetic interaction and gain-of-function studies provide evidence that Tow acts downstream of Fz/Dsh and plays a role in restricting the number of hairs that wing cells form.

0 Bookmarks
 · 
56 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Collagen triple helix repeat containing-1 (CTHRC1) is a secreted glycoprotein that activates the planar cell polarity pathway of Wnt signaling. Using microarray analysis, we found that the CTHRC1 gene is overexpressed in hepatocellular carcinoma (HCC). The level of CTHRC1 mRNA was measured in 201 surgically resected HCCs using real time reverse transcription-polymerase chain reaction. Overexpression of CTHRC1 in HCC was associated with large tumor size and advanced tumor stage. Furthermore, expression of CTHRC1 as was identified as an independent prognostic factors in the multivariate analysis. Suppression of CTHRC1 expression inhibited tumor migration and invasion whereas overexpression of CTHRC1 promoted tumor invasion. Activation of RhoA, but not Rac1 or Cdc42, was found to play a crucial role in CTHRC1-induced cell migration. CTHRC1 promoted adhesion of cancer cells to extracellular matrix through induction of integrin β1 expression and activation of focal adhesion kinase. These results suggest CTHRC1 promotes tumor invasion and metastasis by enhancing the adhesion and migratory abilities of tumor cells. It is also a promising biomarker for predicting the prognosis of patients with HCC.
    PLoS ONE 01/2013; 8(7):e70324. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis.
    Biochimica et Biophysica Acta 03/2010; 1803(7):786-95. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control.
    PLoS Genetics 11/2009; 5(11):e1000746. · 8.52 Impact Factor

Full-text

Download
0 Downloads
Available from