Modulation of Tissue Factor-Factor VIIa Signaling by Lipid Rafts and Caveolae

University of Texas Health Science Center at Tyler, Tyler, Texas, United States
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6). 07/2007; 27(6):1447-55. DOI: 10.1161/ATVBAHA.107.143438
Source: PubMed


Coagulation factor VIIa (VIIa) binding to its cellular receptor, tissue factor (TF), not only initiates the coagulation cascade but also induces cell signaling by activating G-protein coupled protease-activated receptors. The objective of the present study is to investigate the role of lipid rafts and caveolae in modulating TF-VIIa signaling and coagulant functions.
TF-VIIa coagulant function was measured in factor X activation assay and the signaling function was evaluated in phosphoinositide hydrolysis and IL-8 gene induction. Buoyant density gradient centrifugation and immunofluorescence confocal microscopy were used to determine cellular localization of TF and protease-activated receptor 2. The data show that a substantial fraction of TF and protease-activated receptor 2 resides in lipid rafts/caveolae, and disruption of lipid rafts by cholesterol depletion or modification reduced TF-VIIa-induced cell signaling. Disruption of caveolae with caveolin-1 silencing had no effect on the TF-VIIa coagulant activity but inhibited the TF-VIIa-induced cell signaling.
Overall our data show that lipid raft/caveolae play a selective role in modulating the TF-VIIa signaling function without affecting the TF-VIIa coagulant activity.

14 Reads
  • Source
    • "Caveolae has also been suggested to be involved in TF-mediated PAR2 signaling. In breast carcinoma cells, both TF and PAR2 are observed co-localized in cholesterol-rich caveolae, and depletion or sequestration of plasma membrane cholesterol significantly impaired TF-VII1 induced cell signaling (146). It would be interesting to see if different proteases prefer targeting PARs at certain membrane microdomains or there is PARs redistribution upon activation by different proteases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions.
    Frontiers in Endocrinology 05/2014; 5:67. DOI:10.3389/fendo.2014.00067
  • Source
    • "It is well known that the ERK1/2 and NF-κB signaling pathways play a pivotal role in many cellular processes, such as proliferation, apoptosis, and differentiation24, 25, 26, 27. PAR2 activation induced by the TF/factor VIIa complex can trigger cell signal transduction through different pathways, including ERK1/2 and NF-κB15, 28. This study investigated whether EGCG could reverse the activation of ERK-1/2 as well as NF-κB by PAR2 activation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea. The aim of this study is to investigate the effects of EGCG on proliferation and migration of the human colon cancer SW620 cells. Proliferation and migration of SW620 cells were induced by the protease-activated receptor 2-agonist peptide (PAR2-AP, 100 μmol/L) or factor VIIa (10 nmol/L), and analyzed using MTT and Transwell assays, respectively. The cellular cytoskeleton was stained with rhodamine-conjugated phalloidin and examined with a laser scanning confocal fluorescence microscope. The expression of caspase-7, tissue factor (TF) and matrix metalloproteinase (MMP)-9 in the cells was examined using QT-PCR, ELISA and Western blot assays. The activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and nuclear factor-kappa B (NF-κB) signaling pathways was analyzed with Western blot. Both PAR2-AP and factor VIIa promoted SW620 cell proliferation and migration, and caused cytoskeleton reorganization (increased filopodia and pseudopodia). Pretreatment with EGCG (25, 50, 75, and 100 μg/mL) dose-dependently blocked the cell proliferation and migration induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) prevented the cytoskeleton changes induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) counteracted the down-regulation of caspase-7 expression and up-regulation of TF and MMP-9 expression in the cells treated with PAR2-AP or factor VIIa. Furthermore, it blocked the activation of ERK1/2 and NF-κB (p65/RelA) induced by PAR2-AP or factor VIIa. EGCG blocks the proliferation and migration of SW620 cells induced by PAR2-AP and factor VIIa via inhibition of the ERK1/2 and NF-κB pathways. The compound may serve as a preventive and therapeutic agent for colon cancers.
    Acta Pharmacologica Sinica 11/2011; 33(1):120-6. DOI:10.1038/aps.2011.139 · 2.91 Impact Factor
  • Source
    • "Together these studies suggest that localization of PAR1 and EPCR with specific G protein signalling effectors stabilizes a distinct active receptor conformation that favours endothelial barrier protective signalling. Interestingly, caveolae are also required for the activation of PAR2 by the tissue factor-coagulant protease factor VIIa complex but not by synthetic peptide agonists (Awasthi et al., 2008); however, it was not determined whether the different agonists caused biased signalling. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The family of G protein-coupled receptors (GPCRs) constitutes the largest class of signalling receptors in the human genome, controlling vast physiological responses and are the target of many drugs. After activation, GPCRs are rapidly desensitized by phosphorylation and beta-arrestin binding. Most classic GPCRs are internalized through a clathrin, dynamin and beta-arrestin-dependent pathway and then recycled back to the cell surface or sorted to lysosomes for degradation. Given the vast number and diversity of GPCRs, different mechanisms are likely to exist to precisely regulate the magnitude, duration and spatial aspects of receptor signalling. The G protein-coupled protease-activated receptors (PARs) provide elegant examples of GPCRs that are regulated by distinct desensitization and endocytic sorting mechanisms, processes that are critically important for the spatial and temporal fidelity of PAR signalling. PARs are irreversibly activated through proteolytic cleavage and transmit cellular responses to extracellular proteases. Activated PAR(1) internalizes through a clathrin- and dynamin-dependent pathway independent of beta-arrestins. Interestingly, PAR(1) is basally ubiquitinated and deubiquitinated after activation and traffics from endosomes to lysosomes independent of ubiquitination. In contrast, beta-arrestins mediate activated PAR(2) internalization and function as scaffolds that promote signalling from endocytic vesicles. Moreover, activated PAR(2) is modified with ubiquitin, which facilitates lysosomal degradation. Activated PARs also adopt distinct active conformations that signal to diverse effectors and are likely regulated by different mechanisms. Thus, the identification of the molecular machinery important for PAR signal regulation will enable the development of new strategies to manipulate receptor signalling and will provide novel targets for the development of drugs.
    British Journal of Pharmacology 05/2010; 160(2):191-203. DOI:10.1111/j.1476-5381.2010.00705.x · 4.84 Impact Factor
Show more


14 Reads
Available from