Article

Systematic study of association of four GABAergic genes: glutamic acid decarboxylase 1 gene, glutamic acid decarboxylase 2 gene, GABA(B) receptor 1 gene and GABA(A) receptor subunit beta2 gene, with schizophrenia using a universal DNA microarray.

Bio-X Life Science Research Center, Shanghai Jiao Tong University, Hao Ran Building, Shanghai 200030, China.
Schizophrenia Research (Impact Factor: 4.59). 07/2007; 93(1-3):374-84. DOI: 10.1016/j.schres.2007.02.023
Source: PubMed

ABSTRACT Several studies have suggested the dysfunction of the GABAergic system as a risk factor in the pathogenesis of schizophrenia. In the present study, case-control association analysis was conducted in four GABAergic genes: two glutamic acid decarboxylase genes (GAD1 and GAD2), a GABA(A) receptor subunit beta2 gene (GABRB2) and a GABA(B) receptor 1 gene (GABBR1). Using a universal DNA microarray procedure we genotyped a total of 20 SNPs on the above four genes in a study involving 292 patients and 286 controls of Chinese descent. Statistically significant differences were observed in the allelic frequencies of the rs187269C/T polymorphism in the GABRB2 gene (P=0.0450, chi(2)=12.40, OR=1.65) and the -292A/C polymorphism in the GAD1 gene (P=0.0450, chi(2)=14.64 OR=1.77). In addition, using an electrophoretic mobility shift assay (EMSA), we discovered differences in the U251 nuclear protein binding to oligonucleotides representing the -292 SNP on the GAD1 gene, which suggests that the -292C allele has reduced transcription factor binding efficiency compared with the 292A allele. Using the multifactor-dimensionality reduction method (MDR), we found that the interactions among the rs187269C/T polymorphism in the GABRB2 gene, the -243A/G polymorphism in the GAD2 gene and the 27379C/T and 661C/T polymorphisms in the GAD1 gene revealed a significant association with schizophrenia (P<0.001). These findings suggest that the GABRB2 and GAD1 genes alone and the combined effects of the polymorphisms in the four GABAergic system genes may confer susceptibility to the development of schizophrenia in the Chinese population.

0 Bookmarks
 · 
41 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females. Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score. The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder.
    PLoS ONE 01/2012; 7(5):e37651. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Postmortem and genetic studies have clearly demonstrated changes in GABA(B) receptors in neuropsychiatric disorders such as autism, bipolar disorder, major depression, and schizophrenia. Moreover, a number of recent studies have stressed the importance of cerebellar dysfunction in these same disorders. In the current study, we examined protein levels of the two GABA(B) receptor subunits GABBR1 and GABBR2 in lateral cerebella from a well-characterized cohort of subjects with schizophrenia (n=15), bipolar disorder (n=14), major depression (n=13) and healthy controls (n=12). We found significant reductions in protein for both GABBR1 and GABBR2 in lateral cerebella from subjects with schizophrenia, bipolar disorder and major depression when compared with controls. These results provide further evidence of GABAergic dysfunction in these three disorders as well as identify potential targets for therapeutic intervention.
    Schizophrenia Research 02/2011; 128(1-3):37-43. · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with schizophrenia show widespread cortical thickness reductions throughout the brain. Likewise, reduced expression of the γ-Aminobutyric acid (GABA) synthesizing enzyme glutamic acid decarboxylase (GAD1) and a single nucleotide polymorphism (SNP) rs3749034 in the corresponding gene have been associated with schizophrenia. We tested whether this SNP is associated with reduced cortical thickness, an intermediate phenotype for schizophrenia. Because of the well known interactions between the GABAergic and dopaminergic systems, we examined whether associations between GAD1 rs3749034 and cortical thickness are modulated by the catechol-O-methyltransferase (COMT) Val158Met genotype. Structural MRI and genotype data was obtained from 94 healthy subjects enrolled in the Mind Clinical Imaging Consortium study to examine the relations between GAD1 genotype and cortical thickness. Our data show a robust reduction of cortical thickness in the left parahippocampal gyrus (PHG) in G allele homozygotes of GAD1 rs3749034. When we stratified our analyses according to the COMT Val158Met genotype, cortical thickness reductions of G allele homozygotes were only found in the presence of the Val allele. Genetic risk variants of schizophrenia in the GABAergic system might interact with the dopaminergic system and impact brain structure and functioning. Our findings point to the importance of the GABAergic system in the pathogenesis of schizophrenia.
    Journal of Psychiatric Research 04/2013; · 4.09 Impact Factor