Article

Effect of manganese exposure on MPTP neurotoxicities.

Department of Anatomy, College of Medicine, Pusan University Hospital, Pusan, South Korea.
NeuroToxicology (Impact Factor: 2.65). 09/2003; 24(4-5):657-65. DOI: 10.1016/S0161-813X(03)00033-0
Source: PubMed

ABSTRACT We used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice model to evaluate whether manganese (Mn) exposure can affect MPTP-induced neurotoxicity. We randomly assigned adult male C57BL/6 mice (n=5-7 per group) the following treatments: SO, Mn(-) x MPTP(-); MO, Mn(+) x MPTP(-); SM, Mn(-) x MPTP(+); MM, Mn(+) x MPTP(+). Mn (MnCl(2).4H(2)O) was administered intraperitoneally at a dose of 2 mg/kg daily for 3 weeks. MPTP was then administered intraperitoneally at a dose of 30 mg/kg daily for 5 days in the SM and MM groups. Seven days after the last MPTP injection, the animals were sacrificed. Blood Mn levels were elevated in the Mn-exposed groups. Striatal Mn levels were not influenced by Mn treatment alone, however, they were decreased following MPTP. Tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in the substantia nigra pars compacta (SNpc) were decreased significantly in the MPTP-exposed groups. Densities of TH- and dopamine transporter (DAT)-ir axon terminals in the caudate-putamen (CPU) were also decreased in the MPTP-treated groups. Furthermore, glial fibrillary acidic protein (GFAP)-ir astrocytes increased in the CPU with MPTP treatment. However, no effects were observed with Mn exposure. Concentrations of dopamine (DA), 3,4-dihydrophenyl acetic acid (DOPAC) and homovanillic acid (HVA) in the corpus striatum were also decreased significantly with MPTP treatment alone, but Mn had no effect. Thus, decreased dopaminergic activities with MPTP led to decreased DA and its metabolites. Significant hypertrophies of GFAP-ir astrocytes in the globus pallidus (GP) were observed in Mn-exposed groups, especially in the MM group. MPTP targeted dopaminergic systems whereas Mn neurotoxicities occurred in the GP. In conclusion, our data suggest that Mn does not potentiate the neurotoxicity of MPTP.

0 Bookmarks
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron deficiency is a risk factor for manganese (Mn) accumulation. Excess Mn promotes neurotoxicity but the mechanisms involved and whether iron depletion might affect these pathways is unknown. To study Mn intoxication in vivo, iron deficient and control rats were intranasally instilled with 60mg MnCl2/kg over 3 weeks. TUNEL staining of olfactory tissue revealed that Mn exposure induced apoptosis and that iron deficiency potentiated this effect. In vitro studies using the dopaminergic SH-SY5Y cell line confirmed that Mn-induced apoptosis was enhanced by iron depletion using the iron chelator desferrioxamine. Mn has been reported to induce apoptosis through endoplasmic reticulum stress. In SH-SY5Y cells, Mn exposure induced the ER stress genes glucose regulated protein 94 (GRP94) and C/EBP homologous protein (CHOP). Increased phosphorylation of the eukaryotic translation initiation factor 2α (phospho-eIF2α) was also observed. These effects were accompanied by the activation of ER resident enzyme caspase-12, and the downstream apoptotic effector caspase-3 was also activated. All of the Mn-induced responses were enhanced by DFO treatment. Inhibitors of ER stress and caspases significantly blocked Mn-induced apoptosis and its potentiation by DFO, indicating that ER stress and subsequent caspase activation underlie cell death. Taken together, these data reveal that Mn induces neuronal cell death through ER stress and the UPR response pathway and that this apoptotic effect is potentiated by iron deficiency most likely through upregulation of DMT1.
    NeuroToxicology 06/2013; · 2.65 Impact Factor
  • 01/1966;
  • Source