Article

Characteristics and mechanical properties of acrylolpamidronate-treated strontium containing bioactive bone cement.

Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.
Journal of Biomedical Materials Research Part B Applied Biomaterials (Impact Factor: 2.31). 12/2007; 83(2):464-71. DOI: 10.1002/jbm.b.30818
Source: PubMed

ABSTRACT The aim of the present study was to determine the influence of surface treatment on the mechanical properties of strontium-containing hydroxyapatite (Sr-HA) bioactive bone cement. Previously we developed an injectable bioactive cement (SrHAC) system composed of Sr-HA powders and bisphenol A diglycidylether dimethacrylate (Bis-GMA). In this study, the Sr-HA powder was subjected to surface treatment using acrylolpamidronate, a bisphosphonate derivative, which has a polymerizable group, to improve the interface between inorganic filler and organic matrix by binding Sr-HA and copolymerizing into the matrix. After surface treatment, the compression strength, bending strength, and stiffness of the resulting composites were defined by using a material testing machine (MTS) according to ISO 5833. The fracture surface of the bone cement specimen was observed with a scanning electron microscope. Invitro cytotoxicity of surface-treated SrHAC was also studied using a tetrazolium-based cell viability assay (MTS/pms) on human osteoblast-like cells, the SaOS-2 cell line. Cells were seeded at a density of 10(4)/mL and allowed to grow in an incubator for 48 h at 37 degrees C. Results indicated that after surface treatment, the compression strength and stiffness significantly improved by 22.68 and 14.51%, respectively. The bending strength and stiffness of the bioactive bone cement also showed 19.06 and 8.91% improvements via three-point bending test. The fracture surface micromorphology after compression and bending revealed that the bonding between the resin to surface-treated filler considerably improved. The cell viability indicated that the treated particles were nontoxic and did not inhibit cell growth. This study demonstrated a new surface chemistry route to enhance the covalent bonds between inorganic fillers and polymer matrix for improving the mechanical properties of bone cement. This method not only improves the overall mechanical performance but also increases osteoblastic activity.

0 Bookmarks
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poly (methyl methacrylate) (PMMA) bone cement is widely used in vertebral body augmentation procedures such as vertebroplasty and balloon kyphoplasty. Filling high modulus PMMA increases the modulus of filled verterbra, increasing the risk of fracture in the adjacent vertebra. On the other hand, in porous PMMA bone cements, wear particle generation and deterioration of mechanical performance are the major drawbacks. This study adopts a new approach by utilizing linoleic acid coated strontium substituted hydroxyapatite nanoparticle (Sr-5 HA) and linoleic acid as plasticizer reducing bone cement's modulus with minimal impact on its strength. We determined the compressive strength (UCS) and modulus (Ec), hydrophobicity, injectability, in vitro bioactivity and biocompatibility of this bone cement at different filler and linoleic acid loading. At 20 wt % Sr5-HA incorporation, UCS and Ec were reduced from 63 ± 2 MPa, 2142 ± 129 MPa to 58 ± 2 MPa, 1785 ± 64 MPa, respectively. UCS and Ec were further reduced to 49 ± 2 MPa and 774 ± 70 MPa respectively when 15 v/v of linoleic acid was incorporated. After 7 days of incubation, pre-osteoblast cells (MC3T3-E1) attached on 20 wt % Sr5-HA and 20 wt % Sr5-HA with 15 v/v of linoleic acid group were higher (3.73 ± 0.01 x 10⁴, 2.27 ± 0.02 x 10⁴) than their PMMA counterpart (1.83 ± 0.04 x 10⁴). Incorporation of Sr5-HA with linoleic acid in monomer phase is more effective in reducing the bone cement's stiffness than Sr5-HA alone. Combination of low stiffness and high mechanical strength gives the novel bone cement the potential for use in vertebroplasty cement applications.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 11/2010; 96(1):76-83. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is accumulating evidence that strontium (Sr)-containing bioceramics have positive effects on bone tissue repair. The aims of the present study were to evaluate the osteoconductivity of Sr-doped bioactive glass (BG) particles implanted in rat tibia bone marrow, and characterize the neoformed bone tissue by SEM-energy-dispersive X-ray microanalysis. Melt-derived BGs were prepared from a base 45S5 BG. Sr-doped glass (45S5.6Sr) was prepared using 6 wt % SrO as a substitute for the CaO. Histological analysis using undecalcified sections showed that new lamellar bone had formed along the surface of both 45S5 and 45S5.6Sr BG particles within 4 weeks. To evaluate osteoconductivity, affinity indices were calculated. At 30 days after implantation, 45S5 and 45S5.6Sr BGs had almost identical affinity indices (88% +/- 7% and 87% +/- 9%; p > 0.05). Strontium was not detected in the neoformed bone tissue surrounding 45S5.6Sr BG particles. These results indicate that 45S5.6Sr BG particles are osteoconductive when implanted inside the intramedullary canal of rat tibiae, and no alterations in bone mineralization, in terms of Ca/P ratio, were observed in the neoformed bone tissue around 45S5.6Sr BG particles.
    Journal of Biomedical Materials Research Part A 02/2009; 92(1):232-7. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strontium (Sr) and related compounds have become more attractive in the prevention and treatment of osteoporosis. Previously, we developed a novel bioactive bone cement which is mainly composed of strontium-containing hydroxyapatite (Sr-HA) filler and bisphenol A diglycidylether dimethacrylate (Bis-GMA) resin. This bone cement is superior to conventional polymethylmethacrylate (PMMA) bone cement in bioactivity, biocompatibility, and osseointegration. It also has shown sufficient mechanical strength properties for its use in percutaneous vertebroplasty (PVP) and total hip replacement (THR). In this paper, we review the in vitro, in vivo and clinical evidence for the effectiveness of this bioactive bone cement.
    Frontiers of Medicine in China 05/2008; 2(2):117-126.

Full-text (2 Sources)

View
36 Downloads
Available from
May 26, 2014