Bending Dynamics of Fluctuating Biopolymers Probed by Automated High-Resolution Filament Tracking

Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Biophysical Journal (Impact Factor: 3.83). 08/2007; 93(1):346-59. DOI: 10.1529/biophysj.106.096966
Source: PubMed

ABSTRACT Microscope images of fluctuating biopolymers contain a wealth of information about their underlying mechanics and dynamics. However, successful extraction of this information requires precise localization of filament position and shape from thousands of noisy images. Here, we present careful measurements of the bending dynamics of filamentous (F-)actin and microtubules at thermal equilibrium with high spatial and temporal resolution using a new, simple but robust, automated image analysis algorithm with subpixel accuracy. We find that slender actin filaments have a persistence length of approximately 17 microm, and display a q(-4)-dependent relaxation spectrum, as expected from viscous drag. Microtubules have a persistence length of several millimeters; interestingly, there is a small correlation between total microtubule length and rigidity, with shorter filaments appearing softer. However, we show that this correlation can arise, in principle, from intrinsic measurement noise that must be carefully considered. The dynamic behavior of the bending of microtubules also appears more complex than that of F-actin, reflecting their higher-order structure. These results emphasize both the power and limitations of light microscopy techniques for studying the mechanics and dynamics of biopolymers.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological semiflexible polymers and filaments such as collagen, fibronectin, actin, microtubules, coiled-coil proteins, DNA, siRNA, amyloid fibrils, etc., are ubiquitous in nature. In biology, these systems have a direct relation to critical processes ranging from the movement of actin or assembly of viruses at cellular interfaces to the growth of amyloid plaques in neurodegenerative diseases. In technology and applied sciences, synthetic macromolecules or fibrous objects such as carbon nanotubes are involved in countless applications. Accessing their intrinsic properties at the single molecule level, such as their molecular conformations or intrinsic stiffness, is central to the understanding of these systems, their properties, and the design of related applications. In this Perspective we introduce FiberApp—a new tracking and analysis software based on a cascade of algorithms describing structural and topological features of objects characterized by a very high length-to-width aspect ratio, generally described as “fiber-like objects”. The program operates on images from any microscopic source (atomic force or transmission electron microscopy, optical, fluorescence, confocal, etc.), acquiring the spatial coordinates of objects by a semiautomated tracking procedure based on A* pathfinding algorithm followed by the application of active contour models and generating virtually any statistical, topological, and graphical output derivable from these coordinates. Demonstrative features of the software include statistical polymer physics analysis of fiber conformations, height, bond and pair correlation functions, mean-squared end-to-end distance and midpoint displacement, 2D order parameter, excess kurtosis, fractal exponent, height profile and its discrete Fourier transform, orientation, length, height, curvature, and kink angle distributions, providing an unprecedented structural description of filamentous synthetic and biological objects.
    Macromolecules 02/2015; 48(5):150210103859007. DOI:10.1021/ma502264c · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules (MTs) are hollow biopolymeric filaments that function to define the shape of eukaryotic cells, serve as a platform for intracellular vesicular transport, and separate chromosomes during mitosis. One means of physiological regulation of MT mechanics and dynamics, critical to their adaptability in such processes, is through electrostatics due to the strong polyelectrolyte nature of MTs. Here, we show that in the presence of physiologically pertinent amounts of divalent salts, MTs experience a dramatic increase in persistence length or stiffness, which is counter to theoretical expectations and experimental observations in similar systems (e.g., DNA). Divalent salt-dependent effects on MT dynamics were also observed with respect to suppressing depolymerization as well as reducing dispersion in kinesin-driven molecular motor transport assays. These results establish a novel mechanism by which MT dynamics, mechanics, and interaction with molecular motors may be regulated by physiologically relevant concentrations of divalent salts.
    Biomacromolecules 08/2014; 15(10). DOI:10.1021/bm500988r · 5.79 Impact Factor


Available from