Article

Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1.

Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
Cell (Impact Factor: 33.12). 05/2007; 129(1):45-56. DOI: 10.1016/j.cell.2007.01.045
Source: PubMed

ABSTRACT Caspases are intracellular proteases that cleave substrates involved in apoptosis or inflammation. In C. elegans, a paradigm for caspase regulation exists in which caspase CED-3 is activated by nucleotide-binding protein CED-4, which is suppressed by Bcl-2-family protein CED-9. We have identified a mammalian analog of this caspase-regulatory system in the NLR-family protein NALP1, a nucleotide-dependent activator of cytokine-processing protease caspase-1, which responds to bacterial ligand muramyl-dipeptide (MDP). Antiapoptotic proteins Bcl-2 and Bcl-X(L) bind and suppress NALP1, reducing caspase-1 activation and interleukin-1beta (IL-1beta) production. When exposed to MDP, Bcl-2-deficient macrophages exhibit more caspase-1 processing and IL-1beta production, whereas Bcl-2-overexpressing macrophages demonstrate less caspase-1 processing and IL-1beta production. The findings reveal an interaction of host defense and apoptosis machinery.

0 Bookmarks
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytosolic NOD-like receptors (NLRs) have been associated with human diseases including infections, cancer, and autoimmune and inflammatory disorders. These innate immune pattern recognition molecules are essential for controlling inflammatory mechanisms through induction of cytokines, chemokines, and anti-microbial genes. Upon activation, some NLRs form multi-protein complexes called inflammasomes, while others orchestrate caspase-independent nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) signaling. Moreover, NLRs and their downstream signaling components engage in an intricate crosstalk with cell death and autophagy pathways, both critical processes for cancer development. Recently, increasing evidence has extended the concept that chronic inflammation caused by abberant NLR signaling is a powerful driver of carcinogenesis, where it abets genetic mutations, tumor growth, and progression. In this review, we explore the rapidly expanding area of research regarding the expression and functions of NLRs in different types of cancers. Furthermore, we particularly focus on how maintaining tissue homeostasis and regulating tissue repair may provide a logical platform for understanding the liaisons between the NLR-driven inflammatory responses and cancer. Finally, we outline novel therapeutic approaches that target NLR signaling and speculate how these could be developed as potential pharmaceutical alternatives for cancer treatment.
    Frontiers in Immunology 07/2014; 5:327. DOI:10.3389/fimmu.2014.00327
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Linear ubiquitination is a newly discovered posttranslational modification that is currently restricted to a small number of known protein substrates. The linear ubiquitination assembly complex (LUBAC), consisting of HOIL-1L, HOIP, and Sharpin, has been reported to activate NF-κB–mediated transcription in response to receptor signaling by ligating linear ubiquitin chains to Nemo and Rip1. Despite recent advances, the detailed roles of LUBAC in immune cells remain elusive. We demonstrate a novel HOIL-1L function as an essential regulator of the activation of the NLRP3/ASC inflammasome in primary bone marrow–derived macrophages (BMDMs) independently of NF-κB activation. Mechanistically, HOIL-1L is required for assembly of the NLRP3/ASC inflammasome and the linear ubiquitination of ASC, which we identify as a novel LUBAC substrate. Consequently, we find that HOIL-1L−/− mice have reduced IL-1β secretion in response to in vivo NLRP3 stimulation and survive lethal challenge with LPS. Together, these data demonstrate that linear ubiquitination is required for NLRP3 inflammasome activation, defining the molecular events of NLRP3 inflammasome activation and expanding the role of LUBAC as an innate immune regulator. Furthermore, our observation is clinically relevant because patients lacking HOIL-1L expression suffer from pyogenic bacterial immunodeficiency, providing a potential new therapeutic target for enhancing inflammation in immunodeficient patients.
    Journal of Experimental Medicine 06/2014; 211(7). DOI:10.1084/jem.20132486 · 13.91 Impact Factor
  • Source

Full-text (2 Sources)

Download
98 Downloads
Available from
May 29, 2014