Mucosal innate immune response associated with a timely humoral immune response and slower disease progression after oral transmission of simian immunodeficiency virus to rhesus macaques.

Department of Internal Medicine, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
Journal of Virology (Impact Factor: 4.65). 07/2007; 81(12):6175-86. DOI: 10.1128/JVI.00042-07
Source: PubMed

ABSTRACT Mucosal transmission is the predominant mode of human immunodeficiency virus (HIV) infection worldwide, and the mucosal innate interferon response represents an important component of the earliest host response to the infection. Our goal here was to assess the changes in mRNA expression of innate mucosal genes after oral simian immunodeficiency virus (SIV) inoculation of rhesus macaques (Macaca mulatta) that were followed throughout their course of disease progression. The SIV plasma viral load was highest in the macaque that progressed rapidly to simian AIDS (99 days) and lowest in the macaque that progressed more slowly (>700 days). The mRNA levels of six innate/effector genes in the oral mucosa indicated that slower disease progression was associated with increased expression of these genes. This distinction was most evident when comparing the slowest-progressing macaque to the intermediate and rapid progressors. Expression levels of alpha and gamma interferons, the antiviral interferon-stimulated gene product 2'-5' oligoadenylate synthetase (OAS), and the chemokines CXCL9 and CXCL10 in the slow progressor were elevated at each of the three oral mucosal biopsy time points examined (day 2 to 4, 14 to 21, and day 70 postinfection). In contrast, the more rapidly progressing macaques demonstrated elevated levels of these cytokine/chemokine mRNA at lymph nodes, coincident with decreased levels at the mucosal sites, and a decreased ability to elicit an effective anti-SIV antibody response. These data provide evidence that a robust mucosal innate/effector immune response is beneficial following lentiviral exposure; however, it is likely that the anatomical location and timing of the response need to be coordinated to permit an effective immune response able to delay progression to simian AIDS.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The timing of HIV dissemination to the central nervous system (CNS) has the potential to have important implications regarding HIV disease progression and treatment. The earlier HIV enters the CNS the more difficult it might be to remove with antiretroviral therapy. Alternatively, HIV may only enter the CNS later in the course of disease as a result of disruption of the blood-brain-barrier. We utilized the simian immunodeficiency virus (SIV) infection of rhesus macaques to evaluate the oral route of infection and the subsequent spread of SIV to the CNS during the acute infection phase. A high dose oral SIV challenge was utilized to ensure a successful infection and permit the evaluation of CNS spread during the first 1-14 days post-infection. Ultrasensitive nested PCR was used to detect SIV gag DNA in the brains of macaques at 1-2 days post-infection and identified SIV gag DNA in the brain tissues from three of four macaques. This SIV DNA was also present following perfusion of the macaque brains, providing evidence that it was not residing in the circulating blood but in the brain tissue itself. The diversity of the viral envelope V1-V2 region at early times post-infection indicated that the brain viral variants were similar to variants obtained from lymph nodes. This genetic similarity between SIV obtained from lymphoid and brain tissues suggests that the founder population of viral species entered and subsequently spread without any evidence of brain-specific SIV selection. The relatively rapid appearance of SIV within the CNS tissue following oral transmission may also occur during HIV transmission where it may impact disease course as well as representing a challenge for long-term therapies and future viral eradication modalities.
    Frontiers in Immunology 01/2013; 4:236. DOI:10.3389/fimmu.2013.00236
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major research priority for HIV eradication is the elucidation of the events involved in HIV reservoir establishment and persistence. Cell-to-cell transmission of HIV represents an important area of study as it allows for the infection of cell types which are not easily infected by HIV, leading to the establishment of long-lived viral reservoirs. This phenomenon enables HIV to escape elimination by the immune system. This process may also enable HIV to escape suppressive effects of anti-retroviral drugs. During cell-to-cell transmission of HIV, a dynamic series of events ensues at the virological synapse which promote viral dissemination. Cell-to-cell transmission involves various types of cells of the immune system and this mode of transmission has been shown to have an important role in sexual and mother-to-child transmissions of HIV and spread of HIV within the central nervous system and gut-associated lymphoid tissues. There is also evidence that cell-to-cell transmission of HIV occurs between thymocytes and renal tubular cells. Herein, following a brief review of the processes involved at the virological synapse (VS), evidence supporting the role for cell-to-cell transmission of HIV in the maintenance of the HIV reservoir will be highlighted. Therapeutic considerations and future directions for this area of research will be also be discussed.
    Journal of General Virology 08/2014; 95. DOI:10.1099/vir.0.069641-0 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic immune activation (IA) is considered as the driving force of CD4+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs). Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC) homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG) expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products.
    PLoS Pathogens 07/2014; 10(7):e1004241. DOI:10.1371/journal.ppat.1004241 · 8.06 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014