Consequences of postural changes and removal of vestibular inputs on the movement of air in and out of the lungs of conscious felines

Department of Otolaryngology, University of Pittsburgh, Eye and Ear Institute, Pittsburgh, PA 15213, USA.
Journal of Applied Physiology (Impact Factor: 3.43). 08/2007; 103(1):347-52. DOI: 10.1152/japplphysiol.00211.2007
Source: PubMed

ABSTRACT A variety of experimental approaches in human subjects and animal models established that the vestibular system contributes to regulation of respiration. In cats, the surgical elimination of labyrinthine signals produced changes in the spontaneous activity and posturally related responses of a number of respiratory muscles. However, these effects were complex and sometimes varied between muscle compartments, such that the physiological role of vestibulo-respiratory responses is unclear. The present study determined the functional significance of vestibulo-respiratory influences by examining the consequences of a bilateral labyrinthectomy on breathing rate and the pressure, volume, and flow rate of air exchanged during inspiration and expiration as body orientation with respect to gravity was altered. Data were collected from conscious adult cats acclimated to breathing through a facemask connected to a pneuomotach during 60 degrees head-up pitch and ear-down roll body rotations. Removal of vestibular inputs resulted in a 15% reduction in breathing rate, a 13% decrease in minute ventilation, a 16% decrease in maximal inspiratory airflow rate, and a 14% decrease in the maximal expiratory airflow rate measured when the animals were in the prone position. However, the lesions did not appreciably affect phasic changes in airflow parameters related to alterations in posture. These results suggest that the role of the vestibular system in the control of breathing is to modify baseline respiratory parameters in proportion to the general intensity of ongoing movements, and not to rapidly alter ventilation in accordance with body position.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sudden Infant Death Syndrome (SIDS) remains the leading cause of infant mortality in Western societies. A prior study identified an association between hearing suppression on the newborn hearing test and subsequent death from SIDS. This is the first finding of an abnormality in SIDS cases prior to death. A following study identified that inner ear dysfunction precipitates a marked suppression of the hypercapnic ventilatory response (HCVR). Failure of arousal has been proposed to be a key component in SIDS. The objective of the present study was to assess whether inner ear dysfunction not only weakens the hypercapnic response, but also plays a role in suppressing the arousal response to suffocating gas mixtures. Wild type mice (n=28) received intra-tympanic gentamicin (IT-Gent) injections bilaterally or unilaterally to precipitate inner ear hair cell dysfunction. Three control groups (n=22) received intra-tympanic saline (IT-Saline) bilaterally or unilaterally (right or left), or intra-peritoneal gentamicin (IP-Gent).The body movement arousal responses to severe hypoxia- hypercarbia combined (5% CO2 in nitrogen) were tested under light anesthesia eight days following the administration of gentamicin or saline. After injections, the bilateral and unilateral IT-Gent treated animals behaved similarly to controls, however the HCVR as well as the arousal movements in response to severe hypoxia-hypercarbia were suppressed in IT-Gent treated animals compared to control animals (P<0.05). Thus the HCVR was significantly decreased in the bilateral (n=9) and unilateral IT-Gent treated mice (n=19) compared to bilateral (n=7) and unilateral IT-Saline (n=9) control groups (p<0.05). Arousal movements were suppressed in the bilateral IT-Gent group (n=9) compared to bilateral IT-Saline controls (n=7, P<0.0001) and in the unilateral IT-Gent group (n=19) compared to unilateral IT-Saline controls (n=10, P<0.0001). The findings support the theory that inner ear dysfunction could be relevant in the pathophysiology of SIDS. The inner ear appears to play a key role in arousal from suffocating gas mixtures that has not been previously identified.
    Neuroscience 09/2013; DOI:10.1016/j.neuroscience.2013.08.059 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many articles in this section of Comprehensive Physiology are concerned with the development and function of a central pattern generator (CPG) for the control of breathing in vertebrate animals. The action of the respiratory CPG is extensively modified by cortical and other descending influences as well as by feedback from peripheral sensory systems. The central nervous system also incorporates other CPGs, which orchestrate a wide variety of discrete and repetitive, voluntary and involuntary movements. The coordination of breathing with these other activities requires interaction and coordination between the respiratory CPG and those governing the nonrespiratory activities. Most of these interactions are complex and poorly understood. They seem to involve both conventional synaptic crosstalk between groups of neurons and fluid identity of neurons as belonging to one CPG or another: neurons that normally participate in breathing may be temporarily borrowed or hijacked by a competing or interrupting activity. This review explores the control of breathing as it is influenced by many activities that are generally considered to be nonrespiratory. The mechanistic detail varies greatly among topics, reflecting the wide variety of pertinent experiments. © 2012 American Physiological Society. Compr Physiol 2:1387-1415, 2012.
    04/2012; 2(2):1387-1415. DOI:10.1002/cphy.c110004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rostral fastigial nucleus (RFN) of the cerebellum is thought to play an important role in postural control, and recent studies in conscious nonhuman primates suggest that this region also participates in the sensory processing required to compute body motion in space. The goal of the present study was to examine the dynamic and spatial responses to sinusoidal rotations in vertical planes of RFN neurons in conscious cats, and determine if they are similar to responses reported for monkeys. Approximately half of the RFN neurons examined were classified as graviceptive, since their firing was synchronized with stimulus position and the gain of their responses was relatively unaffected by the frequency of the tilts. The large majority (80%) of graviceptive RFN neurons were activated by pitch rotations. Most of the remaining RFN units exhibited responses to vertical oscillations that encoded stimulus velocity, and approximately 50% of these velocity units had a response vector orientation aligned near the plane of a single vertical semicircular canal. Unlike in primates, few feline RFN neurons had responses to vertical rotations that suggested integration of graviceptive (otolith) and velocity (vertical semicircular canal) signals. These data indicate that the physiological role of the RFN may differ between primates and lower mammals. The RFN in rats and cats in known to be involved in adjusting blood pressure and breathing during postural alterations in the transverse (pitch) plane. The relatively simple responses of many RFN neurons in cats are appropriate for triggering such compensatory autonomic responses.
    Neuroscience 06/2008; 155(1):317-25. DOI:10.1016/j.neuroscience.2008.04.042 · 3.33 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014