Article

Apolipoprotein E levels in cerebrospinal fluid and the effects of ABCA1 polymorphisms

Department of Neurology, Washington University, St, Louis, MO, USA.
Molecular Neurodegeneration (Impact Factor: 5.29). 04/2007; 2:7. DOI: 10.1186/1750-1326-2-7
Source: PubMed

ABSTRACT BackgroundAnimal studies suggest that brain apolipoprotein E (apoE) levels influence amyloid-β (Aβ) deposition and thus risk for Alzheimer's disease (AD). We have previously demonstrated that deletion of the ATP-binding cassette A1 transporter (ABCA1) in mice causes dramatic reductions in brain and cerebrospinal fluid (CSF) apoE levels and lipidation. To examine whether polymorphisms in ABCA1 affect CSF apoE levels in humans, we measured apoE in CSF taken from 168 subjects who were 43 to 91 years old and were either cognitively normal or who had mild AD. We then genotyped the subjects for ten previously identified ABCA1 single nucleotide polymorphisms (SNPs).ResultsIn all subjects, the mean CSF apoE level was 9.09 μg/ml with a standard deviation of 2.70 μg/ml. Levels of apoE in CSF samples taken from the same individual two weeks apart were strongly correlated (r2 = 0.93, p < 0.01). In contrast, CSF apoE levels in different individuals varied widely (coefficient of variation = 46%). CSF apoE levels did not vary according to AD status, APOE genotype, gender or race. Average apoE levels increased with age by ~0.5 μg/ml per 10 years (r2 = 0.05, p = 0.003). We found no significant associations between CSF apoE levels and the ten ABCA1 SNPs we genotyped. Moreover, in a separate sample of 1225 AD cases and 1431 controls, we found no association between the ABCA1 SNP rs2230806 and AD as has been previously reported.ConclusionWe found that CSF apoE levels vary widely between individuals, but are stable within individuals over a two-week interval. AD status, APOE genotype, gender and race do not affect CSF apoE levels, but average CSF apoE levels increase with age. Given the lack of association between CSF apoE levels and genotypes for the ABCA1 SNPs we examined, either these SNPs do not affect ABCA1 function or if they do, they do not have strong effects in the CNS. Finally, we find no evidence for an association between the ABCA1 SNP rs2230806 and AD in a large sample set.

Download full-text

Full-text

Available from: Scott Smemo, Feb 12, 2014
1 Follower
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain is lipid-rich compared to other organs and although previous studies have highlighted the importance of ATP-binding cassette (ABC) transporters in the regulation of lipid transport across membranes in peripheral tissues, very little is known regarding ABC transporter function in the CNS. In this study, we bring together recent literature focusing on potential roles for ABC transporters in brain lipid transport and, where appropriate, identify possible links between ABC transporters, lipid transport and neurological disease. Of the 48 transcriptionally active ABC transporters in the human genome, we have focused on 13 transporters (ABCA1, ABCA2, ABCA3, ABCA4, ABCA7 and ABCA8; ABCB1 and ABCB4; ABCD1 and ABCD2; ABCG1, ABCG2, and ABCG4) for which there is evidence suggesting they may contribute in some way to brain lipid transport or homeostasis. The transporters are discussed in terms of their location within brain regions and brain cell types and, where possible, in terms of their known functions and established or proposed association with human neurological diseases. Specific examples of novel treatment strategies for diseases, such as Alzheimer's disease and X-linked adrenoleukodystrophy that are based on modulation of ABC transporter function are discussed and we also examine possible functions for specific ABC transporters in human brain development.
    Journal of Neurochemistry 04/2008; 104(5):1145-66. DOI:10.1111/j.1471-4159.2007.05099.x · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood-brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low-density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained increased. Likewise, intracranial administration of Aβ to apoE-targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4 > apoE3 > apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain.
    NeuroMolecular Medicine 07/2014; DOI:10.1007/s12017-014-8318-6 · 3.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.
    Frontiers in Psychiatry 06/2012; 3:54. DOI:10.3389/fpsyt.2012.00054