Britsch S.. The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190: 1-65

Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany.
Advances in anatomy, embryology, and cell biology (Impact Factor: 17). 02/2007; 190:1-65. DOI: 10.1007/978-3-540-37107-6_1
Source: PubMed


Neuregulins (NRGs) comprise a large family of EGF-like signaling molecules involved in cell-cell communication during development and disease. The neuregulin family of ligands has four members: NRG1, NRG2, NRG3, and NRG4. Relatively little is known about the biological functions of the NRG2, 3, and 4 proteins. In contrast, the NRG1 proteins have been demonstrated to play important roles during the development of the nervous system, heart, and mammary glands. For example, NRG1 has essential functions in the development of neural crest cells and some of their major derivatives, like Schwann cells and sympathetic neurons. NRG1 controls the trabeculation of the myocardial musculature and the ductal differentiation of the mammary epithelium. Moreover, there is emerging evidence for the involvement of NRG signals in the development and function of several other organ systems, and in human disease, including breast cancer and schizophrenia. Many different isoforms of the Neuregulin-1 gene are synthesized. Such isoforms differ in their tissue-specific expression patterns and their biological activities, thereby contributing to the great diversity of the in vivo functions of NRG1. Neuregulins transmit their signals to target cells by interacting with transmembrane tyrosine kinase receptors of the ErbB family. This family includes four members, the epidermal growth factor receptor (EGF-R, ErbB1, ErbB2, ErbB3, and ErbB4). Receptor-ligand interaction induces the heterodimerization of receptor monomers, which in turn results in the activation of intracellular signaling cascades and the induction of cellular responses including proliferation, migration, differentiation, and survival or apoptosis. In vivo, functional NRG1 receptors are heterodimers composed of ErbB2 with either an ErbB3, or ErbB4 molecule. The tissue-specific distribution of the different receptor types further contributes to the diversity and specificity of the biological functions of this signaling pathway. It is a typical feature of the Neuregulin-1/ErbB signaling pathway to control sequential steps during the development of a particular organ system. For example, this pathway functions in early precursor proliferation, maturation, as well as in the myelination of Schwann cells. The systematic analysis of genetic models that have been established by the help of conventional as well as conditional gene targeting strategies in mice was instrumental for the uncovering of the multitude of biological functions of this signaling system. In this review the basic biology of the Neuregulin-1/ErbB system and how it relates to the in vivo functions were discussed with special emphasis to transgenic techniques in mice.

63 Reads
  • Source
    • "Several studies reported that ErbB1 – ErbB4 and their ligands , including EGF , AREG , and NRG activity , are required for airway epithelial cell proliferation and repair ( Britsch , 2007 ; Dammann et al . , 2003 ; Fischer et al . "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to determine the possible changes in the localization of the four Epidermal Growth Factor Receptors and three ligands in quail lungs from the first day of hatching until the 125th after hatching using immunohistochemical methods. Immunohistochemical results demonstrated that four EGFRs and their ligands are chiefly located in the cytoplasm of cells. Additionally, ErbB4, AREG, and NRG1 are localized to the nucleus and nucleolus, but EGF is present in the nucleolus. ErbB2 was also found in the cell membrane. In the epithelium of secondary bronchi, the goblet cells only exhibited ErbB1 and ErbB2, whereas the basal and ciliated cells exhibited EGFRs and ligands immunoreactivity. The atrial granular cells displayed moderate levels of ErbB1-ErbB3 and EGF and strong levels of ErbB4, AREG, and NRG1 immunoreactivity. While the squamous atrial cells and squamous respiratory cells of air capillaries and endothelial cells of blood capillaries exhibited moderate to strong ErbB2, ErbB4, AREG, and NRG1 immunoreactivity, they had negative or weak ErbB1, ErbB3, and EGF immunoreactivity. The expression levels of ErbB2-ErbB4, EGF, AREG, and NRG1 were also detected in fibroblasts. Although ErbB2 was highly expressed in the bronchial and vascular smooth muscle cells, weak expression of ErbB1, ErbB3, AREG and EGF and moderate expression of ErbB4 and NRG1 were observed. Macrophages were only negative for ErbB1. In conclusion, these data indicate that the EGFR-system is functionally active at hatching, which supports the hypothesis that the members of EGFR-system play several cell-specific roles in quail lung growth after hatching. Microsc. Res. Tech., 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Microscopy Research and Technique 07/2015; 78(9). DOI:10.1002/jemt.22544 · 1.15 Impact Factor
  • Source
    • "The neuregulin1/ErbB system plays an important role in Schwann cell (SC) behavior both in normal and pathological conditions [1] and the possibility to manipulate it gives new perspectives to improve posttraumatic nerve regeneration [2] [3] [4]. The ErbB receptor family consists of four tyrosine kinase receptors: epidermal growth factor receptor (EGFR, also called ErbB1 or HER1), ErbB2, ErbB3, and ErbB4 [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuregulin1/ErbB system plays an important role in Schwann cell behavior both in normal and pathological conditions. Upon investigation of the expression of the neuregulin1/ErbB system in vitro, we explored the possibility to manipulate the system in order to increase the migration of Schwann cells, that play a fundamental role in the peripheral nerve regeneration. Comparison of primary cells and stable cell lines shows that both primary olfactory bulb ensheathing cells and a corresponding cell line express ErbB1-ErbB2 and neuregulin1, and that both primary Schwann cells and a corresponding cell line express ErbB2-ErbB3, while only primary Schwann cells express neuregulin1. To interfere with the neuregulin1/ErbB system, the soluble extracellular domain of the neuregulin1 receptor ErbB4 (ecto-ErbB4) was expressed in vitro in the neuregulin1 expressing cell line, and an unexpected increase in cell motility was observed. In vitro experiments suggest that the back signaling mediated by the transmembrane neuregulin1 plays a role in the migratory activity induced by ecto-ErbB4. These results indicate that ecto-ErbB4 could be used in vivo as a tool to manipulate the neuregulin1/ErbB system.
    BioMed Research International 08/2014; 2014:310215. DOI:10.1155/2014/310215 · 1.58 Impact Factor
  • Source
    • "First, extreme reductions in Aβ peptide levels through the inhibition of BACE1 may have harmful side effects. Furthermore, it was discovered that neuregulin-1, a peptide that is essential for the normal development of the nervous system and the heart, is also a substrate of BACE (Britsch, 2007) and a complete abolishment of BACE1 could affect the myelination of neurons, due to the functioning of neuregulin-1. However, BACE1 inhibitor CTS-21166, produced by pharmaceutical company CoMentis, did not influence the myeline sheath in their mouse model. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO), a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ) stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ cerebral spinal fluids (CSF) levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, β-site APP cleaving enzyme 1 (BACE1) inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.
    Frontiers in Aging Neuroscience 07/2014; 6:165. DOI:10.3389/fnagi.2014.00165 · 4.00 Impact Factor
Show more