Article

Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation

Cornell University, Итак, New York, United States
American Journal of Medical Genetics Part A (Impact Factor: 2.05). 05/2007; 143A(9):939-44. DOI: 10.1002/ajmg.a.31667
Source: PubMed

ABSTRACT Two siblings from a consanguineous Egyptian marriage showed an identical phenotype of cortical lissencephaly with cerebellar hypoplasia, severe epilepsy, and mental retardation. Examination of karyotype revealed 46, t(7;12)(q22;p13)mat (7;12)(q22;p13)pat in both affected children, suggesting a homozygous reciprocal balanced translocation. Each healthy parent was a carrier of the balanced translocation in the heterozygous state, suggesting homozygous disruption of a gene involved in brain development. There were early spontaneous abortions in this family, as would be expected from transmission of an unbalanced chromosome. A disruption of RELN at 7q22.1 with absence of encoded protein was identified. This is the first demonstration that such rare homozygous translocations can be used to identify recessive disease gene mutations.

Download full-text

Full-text

Available from: Joseph Gleeson, Dec 18, 2013
2 Followers
 · 
113 Views
  • Source
    • "Reelin deficiency (Reeler) is characterized by an inverted lamination of the neocortex, and the human Reelin (RELN) mutation has been linked to lissencephaly, autism and other disorders (Hong et al., 2000; Zaki et al., 2007). Reelin encodes an extracellular matrixassociated glycoprotein that is secreted by Cajal-Retzius cells in the developing cerebral cortex. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal migration is a fundamental component of brain development whose failure is associated with various neurological and psychiatric disorders. Reelin is essential for the stereotypical inside-out sequential lamination of the neocortex, but the molecular mechanisms of its action still remain unclear. Here we show that regulation of Notch activity plays an important part in Reelin-signal-dependent neuronal migration. We found that Reelin-deficient mice have reduced levels of the cleaved form of Notch intracellular domain (Notch ICD) and that loss of Notch signaling in migrating neurons results in migration and morphology defects. Further, overexpression of Notch ICD mitigates the laminar and morphological abnormalities of migrating neurons in Reeler. Finally, our in vitro biochemical studies show that Reelin signaling inhibits Notch ICD degradation via Dab1. Together, our results indicate that neuronal migration in the developing cerebral cortex requires a Reelin-Notch interaction.
    Neuron 11/2008; 60(2):273-84. DOI:10.1016/j.neuron.2008.09.026 · 15.98 Impact Factor
  • Source
    • "In addition, it has been demonstrated that subcortical band heterotopia can be observed in males with somatic mosaic mutations in DCX and in males and female with missense or somatic mosaic mutations in LIS1 (Leventer et al., 2001; d'Agostino et al., 2002; Poolos et al., 2002; Sicca et al., 2003). Homozygous Reelin (RELN) mutations have been identified in four cases of lissencephaly associated with severe cerebellar and pontine hypoplasia (Hong et al., 2000; Chang et al., 2007; Zaki et al., 2007). As yet, no neuropathological data, especially concerning the cortical cytoarchitecture , have been reported for such cases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lissencephalies are congenital malformations responsible for epilepsy and mental retardation in children. A number of distinct lissencephaly syndromes have been characterized, according to the aspect and the topography of the cortical malformation, the involvement of other cerebral structures and the identified genetic defect. A mutation in TUBA1A, coding for alpha 1 tubulin, was recently identified in a mutant mouse associated with a behavioural disorder and a disturbance of the laminar cytoarchitectony of the isocortex and the hippocampus. Mutations of TUBA1A were subsequently found in children with mental retardation and brain malformations showing a wide spectrum of severities. Here we describe four fetuses with TUBA1A mutations and a prenatal diagnosis of major cerebral dysgeneses leading to a termination of pregnancy due to the severity of the prognosis. The study of these fetuses at 23, 25, 26 and 35 gestational weeks shows that mutations of TUBA1A are associated with a neuropathological phenotypic spectrum which consistently encompasses five brain structures, including the neocortex, hippocampus, corpus callosum, cerebellum and brainstem. Less constantly, abnormalities were also identified in basal ganglia, olfactory bulbs and germinal zones. At the microscopical level, migration abnormalities are suggested by abnormal cortical and hippocampal lamination, and heterotopic neurons in the cortex, cerebellum and brainstem. There are also numerous neuronal differentiation defects, such as the presence of immature, randomly oriented neurons and abnormal axon tracts and fascicles. Thus, the TUBA1A phenotype is distinct from LIS1, DCX, RELN and ARX lissencephalies. Compared with the phenotypes of children mutated for TUBA1A, these prenatally diagnosed fetal cases occur at the severe end of the TUBA1A lissencephaly spectrum. This study emphasizes the importance of neuropathological examinations in cases of lissencephaly for improving our knowledge of the distinct pathogenetic and pathophysiological mechanisms.
    Brain 10/2008; 131(Pt 9):2304-20. DOI:10.1093/brain/awn155 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plasticity of adult neural stem/progenitor cells allows a differential response to a variety of environmental cues. Over the past decade, significant research efforts have been devoted into understanding the regulation of neural stem/progenitor cells due to their promising potential for cell replacement therapies in adult neurological diseases. It has been demonstrated that after brain injury both endogenous and grafted neural stem/progenitor cells have the ability to proliferate to expand their number, migrate long distances to the lesioned site and differentiate into new specific neurons to replace the ones that have been lost. All these procedure are regulated by extrinsic cue found in the microenvironment surrounding the neural stem/progenitor cells. Several chemokines and growth factors have been identified that stimulate the proliferation, differentiation, and migration of endogenous or exogenous neural stem/progenitor cells. The first part of this dissertation work (Chapter 5) identifies the role of several extrinsic factors expressed and secreted by hippocampal astrocytes that regulate the neuronal differentiation of adult neural stem/progenitor cells in the neurogenic region of the dentate gyrus. While in non-neurogenic regions, astrocytes secrete factors that inhibit the differentiation of adult neural stem/progenitor cells. Cell migration is an essential component of neurogenesis in both embryonic and adult brains. Many critical signaling factors and molecules are involved in governing the dynamic process of cell migration, which includes chemotaxis, cytoskeleton restructuring, nuclear translocation, and extracellular matrix remodeling. Extracellular molecules regulate the interaction and communication of the cell with its microenvironment. Investigators have shown that extracellular matrix and matrix remodeling factors play a critical role in directing stem cell migration during development and in the response to brain injury. Identification of the molecular pathways and mechanisms of these factors, involved in regulating stem cell fate choice and homing into the damaged areas, is vital for new treatments in brain injury. In the second part of this dissertation (Chapter 6), I focus on demonstrating that several matrix metalloproteinases are demonstrated to play a role in both the migration and differentiation of adult neural stem cells/progenitor in response to stroke-induced chemokines. The role of matrix metalloproteinase in differentiation may be the first evidence of extracellular molecules effecting the intrinsic regulation of adult neural stem/progenitor fate choice. American Heart Association - Pre-doctoral Fellowship Neurosciences Doctoral University of New Mexico. Biomedical Sciences Graduate Program Zhao, Xinyu Cunningham, Lee Anna McGuire, Paul Wilson, Michael
Show more