Prevalence of sexually transmissible pathogens in semen from asymptomatic male infertility patients with and without leukocytospermia

Department of Obstetrics and Gynecology, Boston University, Boston, Massachusetts, United States
Fertility and sterility (Impact Factor: 4.3). 06/2007; 87(5):1087-97. DOI: 10.1016/j.fertnstert.2006.08.109
Source: PubMed

ABSTRACT To determine the prevalence of pathogens that cause sexually transmitted infections (STIs) in semen from asymptomatic male infertility patients with and without leukocytospermia (LCS), and associations between STIs, inflammatory markers, and other semen variables.
Retrospective, controlled study.
Academic Medical Center.
Two hundred and forty-one male infertility patients undergoing routine semen analysis: 132 with LCS, and 109 without LCS.
The DNA from STI pathogens (human papillomavirus [HPV], cytomegalovirus [CMV], herpes simplex virus [HSV], human herpesvirus type 6 [HHV-6], Epstein-Barr virus [EBV], hepatitis B virus [HBV], and Chlamydia trachomatis [CT]), routine semen parameters, and markers of accessory gland and epididymal function and inflammation.
The DNA from STI pathogens was detected in 45/241 (18.7%) of the samples (CMV, 8.7%; HPV, 4.5%; HHV-6, 3.7%; HSV, 3.7%; CT, 2.5%; EBV, 0.4%; and HBV, 0%), with no difference in prevalence between the LCS and non-LCS groups. The DNA of STI pathogens in semen was associated with a decrease in sperm concentration, motile sperm concentration, total sperm count, and neutral alpha-glucosidase concentration, whereas LCS was associated with a decrease in total sperm count, percent normal forms, and fructose concentration.
The DNA of STI pathogens was detected in semen from a high percentage of asymptomatic male infertility patients, and was associated with poor semen quality. Efforts to diagnose and treat subclinical genital-tract infections should be intensified.

Download full-text


Available from: Nancy B Kiviat, Feb 11, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic viral infections can infect sperm and are considered a risk factor in male infertility. Recent studies have shown that the presence of HIV, HBV or HCV in semen impairs sperm parameters, DNA integrity, and in particular reduces forward motility. In contrast, very little is known about semen infection with human papillomaviruses (HPV), herpesviruses (HSV), cytomegalovirus (HCMV), and adeno-associated virus (AAV). At present, EU directives for the viral screening of couples undergoing assisted reproduction techniques require only the evaluation of HIV, HBV, and HCV. However, growing evidence suggests that HPV, HSV, and HCMV might play a major role in male infertility and it has been demonstrated that HPV semen infection has a negative influence on sperm parameters, fertilization, and the abortion rate. Besides the risk of horizontal or vertical transmission, the negative impact of any viral sperm infection on male reproductive function seems to be dramatic. In addition, treatment with antiviral and antiretroviral therapies may further affect sperm parameters. In this review we attempted to focus on the interactions between defined sperm viral infections and their association with male fertility disorders. All viruses considered in this article have a potentially negative effect on male reproductive function and dangerous infections can be transmitted to partners and newborns. In light of this evidence, we suggest performing targeted sperm washing procedures for each sperm infection and to strongly consider screening male patients seeking fertility for HPV, HSV, and HCMV, both to avoid viral transmission and to improve assisted or even spontaneous fertility outcome.
    Journal of Reproductive Immunology 05/2013; DOI:10.1016/j.jri.2013.03.004 · 2.37 Impact Factor
  • Source
    Chlamydia, 03/2012; , ISBN: 978-953-51-0470-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress occurs when the production of potentially destructive reactive oxygen species (ROS) exceeds the bodies own natural antioxidant defenses, resulting in cellular damage. Oxidative stress is a common pathology seen in approximately half of all infertile men. ROS, defined as including oxygen ions, free radicals and peroxides are generated by sperm and seminal leukocytes within semen and produce infertility by two key mechanisms. First, they damage the sperm membrane, decreasing sperm motility and its ability to fuse with the oocyte. Second, ROS can alter the sperm DNA, resulting in the passage of defective paternal DNA on to the conceptus. This review will provide an overview of oxidative biochemistry related to sperm health and will identify which men are most at risk of oxidative infertility. Finally, the review will outline methods available for diagnosing oxidative stress and the various treatments available.
    Human Reproduction Update 02/2008; 14(3):243-58. DOI:10.1093/humupd/dmn004 · 8.66 Impact Factor