Article

Antisense and short hairpin RNA (shRNA) constructs targeting PIN (Protein Inhibitor of NOS) ameliorate aging-related erectile dysfunction in the rat.

Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.
Journal of Sexual Medicine (Impact Factor: 3.51). 05/2007; 4(3):633-43. DOI: 10.1111/j.1743-6109.2007.00459.x
Source: PubMed

ABSTRACT Over-expression of penile neuronal nitric oxide synthase (PnNOS) from a plasmid ameliorates aging-related erectile dysfunction (ED), whereas over-expression of the protein inhibitor of NOS (PIN), that binds to nNOS, increases ED.
To improve this form of gene therapy for ED by comparing the electrical field response of short hairpin RNA (shRNA) for PIN with that of antisense PIN RNA.
Both shRNA and antisense RNA gene therapy vectors increased intracavernosal pressure in aged rats.
PIN small interfering RNA (siRNA), and plasmid constructs for cytomegalovirus promoter plasmid vector (pCMV-PIN), pCMV-PIN antisense RNA, pSilencer2.1-U6-PIN-shRNA; and pSilencer2.1-U6-randomer-shRNA were prepared and validated by transfection into HEK293 cells, determining the effects on PIN expression by Western blot. Plasmid constructs were then injected, followed by electroporation, into the penile corpora cavernosa of aged (20-month-old) Fisher 344 rats and, 1 month later, the erectile response was measured by intracavernosal pressure increase following electrical field stimulation (EFS) of the cavernosal nerve. PIN was estimated in penile tissue by Western blot and real-time reverse transcriptase-polymerase chain reaction. Cyclic guanosine monophosphate (cGMP) measurements were conducted by competitive enzyme immunoassay (EIA). Immunohistofluorescence detected PIN in corporal tissue sections.
In cell culture, PIN siRNA and plasmid-expressed pU6-PIN-shRNA effectively reduced PIN expression from pCMV-PIN. pSilencer2.1-U6-PIN-shRNA corrected the impaired erectile response to EFS in aged rats and raised it above the value for young rats, more efficiently than pCMV-PIN antisense RNA. PIN mRNA expression in the penis was decreased by >70% by the shRNA but remained unaffected by the antisense RNA, whereas PIN protein expression was reduced in both cases, particularly in the dorsal nerve. PIN antisense increased cGMP concentration in treated tissue by twofold.
pSilencer2.1-U6-PIN-shRNA gene therapy was more effective than the antisense PIN mRNA in ameliorating ED in the aged rat, thereby suggesting that PIN is indeed a physiological inhibitor of nNOS and nitrergic neurotransmission in the penis.

0 Bookmarks
 · 
190 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to get and keep an erection is important to men for several reasons and the inability is called as erectile dysfunction (ED). ED started to be accepted as an early indicator for systemic endothelial dysfunction and subsequent of cardiovascular diseases. The role of nitric oxide (NO) in endothelial relaxation and erectile function is well accepted. The discovery of NO as small signaling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulfide (H2 S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and recently the involvement of H2 S in erectile function has also been confirmed. In this review, we focused on the role of these 3 sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We also reviewed the role of soluble guanylyl cyclase /cyclic GMP pathway as a common target of these gasotransmitters. Several studies proposed alternative therapies targeting different mechanisms in addition to phosphodiesterase-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED.
    British Journal of Pharmacology 03/2014; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erectile dysfunction (ED) is a major men's health problem. Although the high success rate of treating ED by phosphodiesterase 5 (PDE5) inhibitors has been reported, there are a significant number of ED patients who do not respond to currently available treatment modalities. To elucidate the current status of gene therapy applications for ED, gene therapy approaches for ED treatment are reviewed. Gene therapy strategies that can enhance nitric oxide (NO) production or NO-mediated signaling pathways, growth factor-mediated nerve regeneration or K(+) channel activity in the smooth muscle could be promising approaches for the treatment of ED. Although the majority of gene therapy studies are still in the preclinical phase, the first clinical trial using non-viral gene transfer of Ca(2+)-activated, large-conductance K(+) channels into the corpus cavernosum of ED patients showed positive results. Gene therapy represents an exciting future treatment option for ED, especially for people with severe ED unresponsive to current first-line therapies such as PDE5 inhibitors although the long-term safety of both viral and non-viral gene therapies should be established.
    Expert opinion on biological therapy 09/2010; 10(9):1305-14. · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sexual function in men and women incorporates physiologic processes and regulation of the central and peripheral nervous systems, the vascular system, and the endocrine system. There is need for state-of-the-art information as there is an evolving research understanding of the underlying molecular biological factors and mechanisms governing sexual physiologic functions. To develop an evidence-based, state-of-the-art consensus report on the current knowledge of the major cellular and molecular targets of biologic systems responsible for sexual physiologic function. State-of-the-art knowledge representing the opinions of seven experts from four countries was developed in a consensus process over a 2-year period. Expert opinion was based on the grading of evidence-based medical literature, widespread internal committee discussion, public presentation, and debate. Scientific investigation in this field is needed to increase knowledge and foster development of the future line of treatments for all forms of biological-based sexual dysfunction. This article addresses the current knowledge of the major cellular and molecular targets of biological systems responsible for sexual physiologic function. Future treatment targets include growth factor therapy, gene therapy, stem and cell-based therapies, and regenerative medicine. Scientific discovery is critically important for developing new and increasingly effective treatments in sexual medicine. Broad physiologic directions should be vigorously explored and considered for future management of sexual disorders.
    Journal of Sexual Medicine 10/2010; 7(10):3269-304. · 3.51 Impact Factor

Full-text (2 Sources)

View
34 Downloads
Available from
May 16, 2014