Article

Microsensor Arrays for Saliva Diagnostics

Department of Periodontology and Oral Biology, Boston University, Boston, Massachusetts, United States
Annals of the New York Academy of Sciences (Impact Factor: 4.31). 04/2007; 1098(1):389-400. DOI: 10.1196/annals.1384.031
Source: PubMed

ABSTRACT Optical fiber microarrays have been used to screen saliva from patients with end-stage renal disease (ESRD) to ascertain the efficacy of dialysis. We have successfully identified markers in saliva that correlate with kidney disease. Standard assay chemistries for these markers have been converted to disposable test strips such that patients may one day be able to monitor their clinical status at home. Details of these developments are described. In addition, saliva from asthma and chronic obstructive pulmonary disease (COPD) patients is being screened for useful diagnostic markers. Our goal is to develop a multiplexed assay for these protein and nucleic acid biomarkers for diagnosing the cause and severity of pulmonary exacerbations, enabling more effective treatment to be administered. These results are reported in the second part of this article.

Download full-text

Full-text

Available from: Eva J Helmerhorst, Sep 17, 2014
2 Followers
 · 
134 Views
  • Source
    • "Considering the relatively high co-existence rate for saliva proteins and their counterpart mRNAs, the salivary transcriptome derived from DNA microarray analyses may serve as a good indicator of the diversity and range of the salivary proteome, and can be used as a reference guideline for human saliva mass spectrometry proteomic profiling [12]. For example optical fiber microarrays have been used to screen saliva from patients with end-stage renal disease (ESRD) to ascertain the efficacy of dialysis, where two salivary analytes (nitrite and uric acid) were successfully identified markers in saliva that correlate with kidney disease that were elevated in predialysis patients and were shown to be reduced following dialysis [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advancement in mass spectrometry leads us to a new era of proteomic analysis. Human saliva can be easily collected; however, the complexity of the salivary proteome in the past prevented the use of saliva for proteomic analysis. Here we review the development of proteomic analyses for human saliva and focus on the use of a new mass spectrometric technology known as surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF). SELDI-TOF, a modification of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF), combines the precision of mass spectrometry and the high-through-put nature of protein arrays known as Protein Chips. This technology shows a promising future for salivary proteomic analysis in monitoring treatments and diseases, as well as novel biomarker discovery.
    The Open Dentistry Journal 02/2009; 3(1):74-79. DOI:10.2174/1874210600903010074
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Optical-fiber bundles have been employed as a versatile substrate for the fabrication of high-density microwell arrays. In this minireview, we discuss the application of optical-fiber-bundle arrays for a variety of biological problems. For genomics studies and microbial pathogen detection, individual beads have been functionalized with DNA probes and then loaded into the microwells. In addition, beads differentially responsive to vapors have been employed in an artificial olfaction system. Microwell arrays have also been loaded with living cells to monitor their individual response to biologically active compounds over long periods. Finally, the microwells have been sealed to enclose single enzyme molecules that can be used to measure individual molecule catalytic activity.
    FEBS Journal 12/2007; 274(21):5462-70. DOI:10.1111/j.1742-4658.2007.06078.x · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Initial screening of potential biomarkers for monitoring dialysis was performed with saliva samples collected from patients with end-stage renal disease (ESRD). A more thorough analysis of the most promising markers identified in the initial screening was conducted with saliva samples acquired at hourly intervals throughout dialysis to monitor analyte concentrations as dialysis progressed. We observed that salivary nitrite (NO(2)(-)) and uric acid (UA) concentrations consistently decreased as dialysis proceeded. Solution-based colorimetric-detection chemistries for NO(2)(-) and UA were converted to a test strip format to produce a simple method for semiquantitatively measuring NO(2)(-) and UA concentrations in the clinic or at the patient's home. We assessed the test strips with saliva samples collected from both ESRD patients undergoing dialysis and healthy control volunteers to qualitatively monitor the effect of dialysis on salivary NO(2)(-) and UA. We used computer software to analyze digital images of the resulting test strip color intensities. Test strip measurements showed that mean salivary concentrations of NO(2)(-) and UA were decreased in ESRD patients by 86% and 39%, respectively, compared with 15% and 9% for time-matched controls. Comparison of test strip results with calibrated solution-based assays suggests that the test strips can semiquantitatively measure salivary concentrations of NO(2)(-) and UA. The colorimetric test strips monitored changes in salivary NO(2)(-) and UA concentrations that occurred in ESRD patients during dialysis. The test strips may prove useful for noninvasively evaluating dialysis progress and may also be useful for monitoring renal disease status.
    Clinical Chemistry 10/2008; 54(9):1473-80. DOI:10.1373/clinchem.2008.105320 · 7.77 Impact Factor
Show more