Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis

University of Toronto, Toronto, Ontario, Canada
Nature Genetics (Impact Factor: 29.65). 05/2007; 39(5):596-604. DOI: 10.1038/ng2032
Source: PubMed

ABSTRACT We present a genome-wide association study of ileal Crohn disease and two independent replication studies that identify several new regions of association to Crohn disease. Specifically, in addition to the previously established CARD15 and IL23R associations, we identified strong and significantly replicated associations (combined P < 10(-10)) with an intergenic region on 10q21.1 and a coding variant in ATG16L1, the latter of which was also recently reported by another group. We also report strong associations with independent replication to variation in the genomic regions encoding PHOX2B, NCF4 and a predicted gene on 16q24.1 (FAM92B). Finally, we demonstrate that ATG16L1 is expressed in intestinal epithelial cell lines and that functional knockdown of this gene abrogates autophagy of Salmonella typhimurium. Together, these findings suggest that autophagy and host cell responses to intracellular microbes are involved in the pathogenesis of Crohn disease.

Download full-text


Available from: Petric Kuballa, Jul 07, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that gastric barrier is very important for protecting host from various insults. Simultaneously, autophagy serving as a prominent cytoprotective and survival pathway under oxidative stress conditions is being increasingly recognized. Thus, this study was conducted for investigating the effect of pyrrolidine dithiocarbamate (PDTC) on gastric barrier function and autophagy under oxidative stress induced by intragastric administration of hydrogen peroxide (H2O2). The gastric tight junction proteins [zonula occludens-1 (ZO1), occludin, and claudin1], autophagic proteins [microtubule-associated protein light chain 3I(LC3I), LC3II, and beclin1], and nuclear factor kappa B (NF-κB) signaling pathway (p65 and IκB kinase α/β) were determined by Western blot. The results showed that H2O2 exposure disturbed gastric barrier function with decreased expression of ZO1, occludin, and claudin1, and reduced gastric autophagy with decreased conversion of LC3I into LC3II in mice. However, treatment with PDTC restored these adverse effects evidenced by increased expression of ZO1 and claudin1 and increased conversion of LC3I into LC3II. Meanwhile, H2O2 exposure decreased normal human gastric epithelial mucosa cell line (GES-1) viability in a concentration-dependent way. However, after being exposed to H2O2, GES-1 exhibited autophagic response which was inconsistent with our in vivo results in mice, while PDTC failed to decrease autophagy in GES-1 induced by H2O2. Simultaneously, the beneficial effect of PDTC on gastric damage and autophagy in mice might be independent of inhibition of NF-κB. In conclusion, PDTC treatment restores gastric damages and reduced autophagy induced by H2O2. Therefore, PDTC may serve as a potential adjuvant therapy for gastric damages.
    Free Radical Research 12/2014; 49(2):1-20. DOI:10.3109/10715762.2014.993627 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated. Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria. Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake.
    BioMetals 07/2014; 27(6). DOI:10.1007/s10534-014-9773-0 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human dendritic cells (DCs) play an important role in induction and progression of Crohn's disease (CD). Accumulating evidence suggests that viral infection is required to trigger CD pathogenesis in genetically predisposed individuals. NOD2 and ATG16L1 are among the major CD susceptibility genes implicated in impaired immune response to bacterial infection. In this study, we investigated gene expression and allelic imbalance (AI) of NOD2 and ATG16L1 using common variants in human monocyte-derived DCs. Significant AI was observed in ~40% and ~70% of NOD2 and ATG16L1 heterozygotes, respectively (p<0.05). AI of NOD2 was inversely associated with its expression level (p=0.015). No correlation was detected between gene expression and AI for ATG16L1. When infected with Newcastle disease virus (NDV), NOD2 expression in DCs was induced about four-fold (p<0.001), whereas ATG16L1 expression was not affected (p=0.88). In addition, NDV infection tended to lower the variance in AI among DC populations for the NOD2 gene (p=0.05), but not the ATG16L1 gene (p=0.32). Findings of a simulation study, aimed to verify whether the observed variation in gene expression and AI is a result of sample-to-sample variability or experimental measurement error, suggested that NOD2 AI is likely to result from a deterministic event at a single cell level. Overall, our results present initial evidence that AI of the NOD2 and ATG16L1 genes exists in populations of human DCs. In addition, our findings suggest that viral infection may regulate NOD2 expression.
    Gene 07/2013; 527(2). DOI:10.1016/j.gene.2013.06.066 · 2.08 Impact Factor