Article

Strain-specific ureolytic microbial calcium carbonate precipitation.

Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, B-9000 Ghent, Belgium.
Applied and Environmental Microbiology (Impact Factor: 3.95). 09/2003; 69(8):4901-9. DOI: 10.1128/AEM.69.8.4901-4909.2003
Source: PubMed

ABSTRACT During a study of ureolytic microbial calcium carbonate (CaCO(3)) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO(3) crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (K(m)) and maximum hydrolysis rates (V(max)) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium.

0 Bookmarks
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, Bacillus pumilus ACA-DC 4061 was selected for its increased capability for biomineralization on marble, under different nutrient media concentrations and temperature conditions. The optimum conditions for the CaCO3 bacterially-induced precipitation were determined with the aid of testing based on the Design of Experiments (DoE). Biomineral (vaterite) precipitation was favored in both the temperatures (25 and 30 °C) investigated. Stone loss rate was reduced when the samples were subjected to sonication. Thin sections of the substrate confirmed that vaterite was able to adhere onto the surface. Finally, under non-sterile conditions mimicking an in situ application, B. pumilus ACA-DC 4061 formed a fine layer of calcium carbonate. Therefore, this microorganism showed that vaterite formation may consistently occur under specific conditions and could prove useful as a candidate for on-site applications for stone conservation.
    International Biodeterioration & Biodegradation 04/2015; 99:73. DOI:10.1016/j.ibiod.2014.12.005 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial precipitation of calcium carbonate takes place in nature by different mechanisms. One of them is microbially induced carbonate precipitation (MICP), which is performed due to bacterial hydrolysis of urea in soil in the presence of calcium ions. The MICP process can be adopted to reduce the permeability and/or increase the shear strength of soil. In this paper, a study on the use of Bacillus sp., which was isolated from tropical beach sand, to perform MICP either on the surface or in the bulk of sand is presented. If the level of calcium salt solution was below the sand surface, MICP took place in the bulk of sand. On the other hand, if the level of calcium salt solution was above the sand surface, MICP was performed on the sand surface and formed a thin layer of crust of calcium carbonate. After six sequential batch treatments with suspension of urease-producing bacteria and solutions of urea and calcium salt, the permeability of sand was reduced to 14 mm/day (or 1.6×10−7 m/s) in both cases of bulk and surface MICP. Quantities of precipitated calcium after six treatments were 0.15 and 0.60 g of Ca per cm2 of treated sand surface for the cases of bulk or surface MICP, respectively. The stiffness of the MICP treated sand also increased considerably. The modulus of rupture of the thin layer of crust was 35.9 MPa which is comparable with limestone.
    Geomicrobiology 08/2012; 29(6):544-549. DOI:10.1080/01490451.2011.592929 · 1.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to analyse the effect of oil contamination and biostimulation (soil pH raise, and nitrogen, phosphate and sulphur addition) on the diversity of a bacterial community of an acidic Cambisol under Atlantic Forest. The experiment was based on the enumeration of bacterial populations and hydrocarbon degraders in microcosms through the use of conventional plating techniques and molecular fingerprinting of samples directly from the environment. PCR followed by denaturing gradient gel electrophoresis (DGGE) was used to generate microbial community fingerprints employing 16S rRNA gene as molecular marker. Biostimulation led to increases of soil pH (to 7.0) and of the levels of phosphorus and K, Ca, and Mg. Oil contamination caused an increase in soil organic carbon (170–190% higher than control soil). Total bacterial counts were stable throughout the experiment, while MPN counts of hydrocarbon degraders showed an increase in the biostimulated and oil-contaminated soil samples. Molecular fingerprinting performed with 16S rRNA gene PCR and DGGE analysis revealed stable patterns along the 360 days of experiment, showing little change in oil-contaminated microcosms after 90 days. The DGGE patterns of the biostimulated samples showed severe changes due to decreases in the number of bands as compared to the control samples as from 15 days after addition of nutrients to the soil. Results obtained in the present study indicate that the addition of inorganic compounds to soil in conjunction with oil contamination has a greater impact on the bacterial community than oil contamination only.
    Annales de Réadaptation et de Médecine Physique 05/2004; DOI:10.1016/S0168-6496(04)00128-X

Full-text (2 Sources)

Download
60 Downloads
Available from
May 17, 2014