Article

Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation

Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, B-9000 Ghent, Belgium.
Applied and Environmental Microbiology (Impact Factor: 3.95). 09/2003; 69(8):4901-9. DOI: 10.1128/AEM.69.8.4901-4909.2003
Source: PubMed

ABSTRACT During a study of ureolytic microbial calcium carbonate (CaCO(3)) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO(3) crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (K(m)) and maximum hydrolysis rates (V(max)) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium.

Download full-text

Full-text

Available from: Nico Boon, Jul 05, 2015
0 Followers
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, Bacillus pumilus ACA-DC 4061 was selected for its increased capability for biomineralization on marble, under different nutrient media concentrations and temperature conditions. The optimum conditions for the CaCO3 bacterially-induced precipitation were determined with the aid of testing based on the Design of Experiments (DoE). Biomineral (vaterite) precipitation was favored in both the temperatures (25 and 30 °C) investigated. Stone loss rate was reduced when the samples were subjected to sonication. Thin sections of the substrate confirmed that vaterite was able to adhere onto the surface. Finally, under non-sterile conditions mimicking an in situ application, B. pumilus ACA-DC 4061 formed a fine layer of calcium carbonate. Therefore, this microorganism showed that vaterite formation may consistently occur under specific conditions and could prove useful as a candidate for on-site applications for stone conservation.
    International Biodeterioration & Biodegradation 04/2015; 99:73. DOI:10.1016/j.ibiod.2014.12.005 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precipitation of calcium carbonate (CaCO3(s)) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying phylotypes consistent with certain mineralogical features is the first step toward discovering a link between these crystal features and the precise underlying molecular biology of the organism precipitating them.
    Geobiology 09/2014; 12(6). DOI:10.1111/gbi.12102 · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper discusses the role that material ecologies might have in the emerging engineering paradigm of Synthetic Biology (hereafter SB). In this paper we suggest that, as a result of the paradigm of SB, a new way of considering the relationship between computation and material forms is needed, where computation is embedded into the material elements themselves through genetic programming. The paper discusses current trends to conceptualize SB in traditional engineering terms and contrast this from design speculations in terms of bottom up processes of emergence and self organization. The paper suggests that, to reconcile these positions, it is necessary to think about the design of new material systems derived from engineering living organisms in terms of a state space of production. The paper analyses this state space using the example of biomineralization, with illustrations from simple experiments on bacteria induced calcium carbonate. The paper suggests a framework involving three interconnected state spaces defined as: cellular (the control of structures within the cell structures within a cell, and specifically DNA and its expression through the process of transcription and translation); chemical (considered to occur outside the cell, but in direct chemical interaction with the interior of the cell itself); physical (which constitutes the physical forces and energy within the environment). We also illustrate, in broad terms, how such spaces are interconnected. Finally the paper will conclude by suggesting how a material ecologies approach might feature in the future development of SB.
    Computer-Aided Design 03/2014; DOI:10.1016/j.cad.2014.02.012 · 1.52 Impact Factor