Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer

Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Genes Chromosomes and Cancer (Impact Factor: 4.04). 07/2007; 46(7):694-707. DOI: 10.1002/gcc.20454
Source: PubMed


Genomic changes in chromosome 8 are commonly observed in breast cancer cell lines and tumors. To fine map such genomic changes by comparative genomic hybridization (CGH), a high resolution (100 kb) chromosome 8 array that can detect single copy changes was developed using Phi29 DNA polymerase amplified BAC (bacterial artificial chromosome) DNA. The BAC array CGH resolved the two known amplified regions (8q21 and 8q24) of a breast cancer cell line (SKBR3) into nine separate regions including six amplicons and three deleted regions, all of which were verified by Fluorescence in situ hybridization. The extent of the gain/loss for each region was validated by qPCR. CGH was performed with a total of 8 breast cancer cell lines, and common regions of genomic amplification/deletion were identified by segmentation analysis. A 1.2-Mb region (125.3-126.5 Mb) and a 1.0-Mb region (128.1-129.1 Mb) in 8q24 were amplified in 7/8 cell lines. A global expression analysis was performed to evaluate expression changes associated with genomic amplification/deletion: a novel gene, TRMT12 (at 125.5 Mb), amplified in 7/8 cell lines, showed highest expression in these cell lines. Further analysis by RT-qPCR using RNA from 30 breast tumors showed that TRMT12 was overexpressed >2 fold in 87% (26/30) of the tumors. TRMT12 is a homologue of a yeast gene encoding a tRNA methyltransferase involved in the posttranscriptional modification of tRNA(Phe), and exploring the biological consequence of its altered expression, may reveal novel pathways in tumorigenesis. This article contains Supplementary Material available at

3 Reads
  • Source
    • "The IMP3 gene is expressed in tumors and its expression level is associated with metastasis in renal cell carcinomas and patient's survival rate (Jiang, Chu, et al. 2008; Jiang, Lohse, et al. 2008). Overexpression of another " orphan " retrogene, TRMT12, may lead to translation errors in breast tumor cells (Rodriguez et al. 2007). A high expression level of ADRA2A can increase type 2 diabetes risk (Rosengren et al. 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene duplicates generated via retroposition were long thought to be pseudogenized and consequently decayed. However, a significant number of these genes escaped their evolutionary destiny and evolved into functional genes. Despite multiple studies, the number of functional retrogenes in human and other genomes remains unclear. We performed a comparative analysis of human, chicken, and worm genomes in order to identify "orphan" retrogenes, i.e. retrogenes that have replaced their progenitors. We located twenty five such candidates in the human genome. All of these genes were previously known and majority has been intensively studied. Despite this, they were never been recognized as retrogenes. Analysis revealed that the phenomenon of replacing parental genes by their retrocopies has been taking place over the entire span of animal evolution. This process was often species-specific and contributed to interspecies differences. Surprisingly, these retrogenes, which should evolve in a more relaxed mode, are subject to a very strong purifying selection, which is on average, two and a half times stronger than other human genes. Also, for retrogenes, they do not show a typical overall tendency for a testis specific expression. Notably, seven of them are associated with human diseases. Recognizing them as "orphan" retrocopies, which have different regulatory machinery than their parents, is important for any disease studies in model organisms, especially when discoveries made in one species are transferred to humans.
    Molecular Biology and Evolution 10/2012; 30(2). DOI:10.1093/molbev/mss235 · 9.11 Impact Factor
  • Source
    • "High-density BAC arrays revealed amplification of an ∼1 Mb region on chromosome 8 in several breast cancer cell lines, and hTYW2, located within this genomic region, showed the highest expression across all the cell lines. RNA from 30 breast tumors was examined and hTYW2 was found to be expressed >2 fold in 87% of the tumors [7]. Therefore, it was of interest to evaluate whether overexpression of the hTYW2 disrupted the wybutosine pathway in the mammary tumor cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNA(Phe). TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNA(Phe). Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNA(Phe) modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis.
    PLoS ONE 06/2012; 7(6):e39297. DOI:10.1371/journal.pone.0039297 · 3.23 Impact Factor
  • Source

Show more

Similar Publications