Article

The metabolic consequences of sleep deprivation

Department of Medicine, University of Chicago, 5841 S. Maryland Ave, MC 1027, Chicago, IL 60637, USA.
Sleep Medicine Reviews (Impact Factor: 9.14). 07/2007; 11(3):163-78. DOI: 10.1016/j.smrv.2007.01.002
Source: PubMed

ABSTRACT The prevalence of diabetes and obesity is increasing at an alarming rate worldwide, and the causes of this pandemic are not fully understood. Chronic sleep curtailment is a behavior that has developed over the past 2-3 decades. Laboratory and epidemiological studies suggest that sleep loss may play a role in the increased prevalence of diabetes and/or obesity. Current data suggest the relationship between sleep restriction, weight gain and diabetes risk may involve at least three pathways: (1) alterations in glucose metabolism; (2) upregulation of appetite; and (3) decreased energy expenditure. The present article reviews the current evidence in support of these three mechanisms that might link short sleep and increased obesity and diabetes risk.

0 Bookmarks
 · 
242 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the association of socioeconomic status (SES) with subjective and objective sleep disturbances and the role of socio-demographic, behavioural and psychological factors in explaining this association. Analyses are based on 3391 participants (53% female, aged 40-81 years) of the follow-up of the CoLaus study (2009-2012), a population-based sample of the city of Lausanne, Switzerland. All participants completed a sleep questionnaire and a sub-sample (N = 1569) underwent polysomnography. Compared with men with a high SES, men with a low SES were more likely to suffer from poor sleep quality [prevalence ratio (PR) for occupational position = 1.68, 95% Confidence Interval (CI): 1.30-2.17], and to have long sleep latency (PR = 4.90, 95%CI: 2.14-11.17), insomnia (PR = 1.47, 95% CI: 1.12-1.93) and short sleep duration (PR = 3.03, 95% CI: 1.78-5.18). The same pattern was observed among women (PR = 1.29 for sleep quality, 2.34 for sleep latency, 2.01 for daytime sleepiness, 3.16 for sleep duration, 95%CIs ranging from 1.00 to 7.51). Use of sleep medications was not patterned by SES. SES differences in sleep disturbances were only marginally attenuated by adjustment for other socio-demographic, behavioural and psychological factors. Results from polysomnography confirmed poorer sleep patterns among participants with low SES (p <0.05 for sleep efficiency/stage shifts), but no SES differences were found for sleep duration. In this population-based sample, low SES was strongly associated with sleep disturbances, independently of socio-demographic, behavioural, and psychological factors. Further research should establish the extent to which social differences in sleep contribute to socioeconomic differences in health outcomes. Copyright © 2014 Elsevier B.V. All rights reserved.
    Sleep Medicine 02/2015; DOI:10.1016/j.sleep.2014.12.014 · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep disturbance is commonly encountered amongst intensive care patients and has significant psychophysiological effects, which protract recovery and increases mortality. Bio-physiological monitoring of intensive care patients reveal alterations in sleep architecture, with reduced sleep quality and continuity. The etiological causes of sleep disturbance are considered to be multifactorial, although environmental stressors namely, noise, light and clinical care interactions have been frequently cited in both subjective and objective studies. As a result, interventions are targeted towards modifiable factors to ameliorate their impact. This paper reviews normal sleep physiology and the impact that sleep disturbance has on patient psychophysiological recovery, and the contribution that the clinical environment has on intensive care patients’ sleep.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigating the potential pathways linking shift work and cardiovascular diseases (CVD), this study aimed to identify whether sleep disturbances mediate the relationship between shift work and the metabolic syndrome, a cluster of CVD risk factors. Cross-sectional study. A tertiary-level, acute care teaching hospital in Southeastern Ontario, Canada. Female hospital employees working a shift schedule of two 12 h days, two 12 h nights, followed by 5 days off (n=121) were compared with female day-only workers (n=150). Each of the seven components of the Pittsburgh Sleep Quality Index (PSQI) was measured. Of these, PSQI global score, sleep latency and sleep efficiency were examined as potential mediators in the relationship between shift work and the metabolic syndrome. Shift work status was associated with poor (>5) PSQI global score (OR=2.10, 95% CI 1.20 to 3.65), poor (≥2) sleep latency (OR=2.18, 95% CI 1.23 to 3.87) and poor (≥2) sleep efficiency (OR=2.11, 95% CI 1.16 to 3.84). Although shift work was associated with the metabolic syndrome (OR=2.29, 95% CI 1.12 to 4.70), the measured components of sleep quality did not mediate the relationship between shift work and the metabolic syndrome. Women working in a rapid forward rotating shift pattern have poorer sleep quality according to self-reported indicators of the validated PSQI and they have a higher prevalence of the metabolic syndrome compared with women who work during the day only. However, sleep quality did not mediate the relationship between shift work and the metabolic syndrome, suggesting that there are other psychophysiological pathways linking shift work to increased risk for CVD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
    BMJ Open 01/2015; 5(3):e007327. DOI:10.1136/bmjopen-2014-007327 · 2.06 Impact Factor

Full-text (2 Sources)

Download
79 Downloads
Available from
Jun 5, 2014