Profibrotic effect of IL-9 overexpression in a model of airway remodeling.

Unit of Industrial Toxicology and Occupational Medicine, Université catholique de Louvain, Avenue Mounier, 53.02, 1200 Brussels, Belgium.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.11). 09/2007; 37(2):202-9. DOI: 10.1165/rcmb.2006-0397OC
Source: PubMed

ABSTRACT IL-9 overexpression protects against alveolar fibrosis induced by crystalline silica particles. This cytokine is also involved in allergic asthma. In the present study, we examined the effect of IL-9 overexpression on the subepithelial fibrotic response, a feature of asthmatic remodeling, induced by chronic exposure to Alternaria alternata extract. IL-9-overexpressing mice (Tg5) and their wild-type counterparts (FVB) were intranasally exposed to A. alternata extract or PBS (controls) twice a week during 3 mo. At the end of the allergic challenge, enhanced pause (Penh) measured in response to methacholine and fibrotic parameters, such as collagen and fibronectin lung content, were significantly higher in Tg5 compared with FVB. Staining of lung sections with Masson's Trichrome also showed more collagen fibers in peribronchial areas of treated Tg5 mice. A similar recruitment of inflammatory cells was observed in challenged FVB and Tg5 mice, except for eosinophils, which were significantly more abundant in the lung of Tg5. High serum levels of IgE and IgG1 in both strains indicated that FVB and Tg5 developed a strong type 2 immune response. The concentration of the eosinophil chemoattractant RANTES and the profibrotic mediator connective tissue growth factor (CTGF) was higher in the BAL of challenged Tg5 than FVB. These results demonstrate a profibrotic role of IL-9 in an airway remodeling model, possibly involving eosinophils and CTGF. These data also highlight a dual role of IL-9 in lung fibrosis, being anti- or profibrotic depending on the alveolar or airway localization of the process, respectively.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCN proteins play crucial roles in development, angiogenesis, cell motility, matrix turnover, proliferation, and other fundamental cell processes. Early embryonic lethality in CCN5 knockout and over-expressing mice led us to characterize CCN5 distribution in early development. Previous papers in this series showed that CCN5 is expressed widely in mice from E9.5 to adult; however, its distribution before E9.5 has not been studied. To fill this gap in our knowledge of CCN5 expression in mammals, RT-PCR was performed on preimplantation murine embryos: 1 cell, 2 cell, 4 cell, early morula, late morula, and blastocyst. CCN5 mRNA was not detected in 1, 2, or 4 cell embryos. It was first detected at the early morula stage and persisted to the preimplantation blastocyst stage. Immunohistochemical staining showed widespread CCN5 expression in post-implantation blastocysts (E4.5), E5.5, E6.5, and E7.5 stage embryos. Consistent with our previous study on E9.5 embryos, this expression was not limited to a particular germ layer or cell type. The widespread distribution of CCN5 in early embryos suggests a crucial role in development.
    Journal of Cell Communication and Signaling 08/2012; DOI:10.1007/s12079-012-0176-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled β2 -agonists and glucocorti-coids; these control asthma in about 90–95% of patients. However, the future therapies will need to focus on the 5–10% patients who do not respond well to these treatments and who account for ~50% of the health care costs of asthma [1, 2]. Strategies for the primary prevention of asthma remain in the realm of speculation and hypothesis [3]. Drug development for asthma has been directed at improving currently available drugs and finding new compounds that target the Th2-driven airway inflammatory response. Several new compounds have been developed to target specific components of the inflammatory process in asthma [e.g., anti-IgE antibodies (omalizumab), cytokines and/or chemokines antagonists, immunomodu-lators, antagonists of adhesion molecules], although they have not yet been proven to be particularly effective. In fact, only omalizumab has reached the market; it may be most cost-effective for patients with severe persistent asthma and frequent severe exacerbations requiring hospital care [3– 5]. In this chapter, we will review the role of current antiasthma drugs and future new chemical entities that can target Th2 cells in asthmatic airways. Some of these new Th2-oriented strategies may, in the future, not only control symptoms and modify the natural course of asthma, but also potentially prevent or cure the disease.
    11/2009: pages 103-147;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of several subsets of CD4(+) Th lymphocytes has contributed to refine and to challenge our understanding of the roles of CD4(+) T cells in the pathogenesis of fibrotic lung diseases. Here, we review recent findings, indicating that CD4(+) T subpopulations possess contrasting pro- and antifibrotic activities in human and experimental lung fibrosis. Special attention is given to delineate the activity of the newly discovered CD4(+) T lymphocyte subsets (Tregs, Th22, and Th9) on fibroblast function and matrix deposition through the release of growth factors, cytokines, and eicosanoids. It appears that the function of a CD4(+) T lymphocyte subset or of a cytokine can differ with the disease stage (acute vs. chronic), pulmonary localization (bronchial vs. alveolar), cellular level (epithelial cell vs. fibroblast), or immune environment (inflammatory or immunosuppressive). Integrating our recent understanding of the contrasting functions of T lymphocyte subsets in fibrosis provides new insights and opportunities for improved treatment strategies.
    Journal of leukocyte biology 11/2012; 93(4). DOI:10.1189/jlb.0512261 · 4.99 Impact Factor