Activation of the cortical pain network by soft tactile stimulation after injection of sumatriptan

Department of Neurology, Johannes Gutenberg University, Mainz, Germany.
Pain (Impact Factor: 5.84). 12/2007; 133(1-3):72-8. DOI: 10.1016/j.pain.2007.03.001
Source: PubMed

ABSTRACT The anti-migraine drug sumatriptan often induces unpleasant somatosensory side effects, including a dislike of being touched. With a double-blind cross-over design, we studied the effects of sumatriptan and saline on perception (visual analogue scale) and cortical processing (functional magnetic resonance imaging) of tactile stimulation in healthy subjects. Soft brush stroking on the calf (n=6) was less pleasant (p<0.04) and evoked less activation of posterior insular cortex in the sumatriptan compared to the saline condition. Soft brushing activated pain processing regions (anterior insular, lateral orbitofrontal, and anterior cingulate cortices, and medial thalamus) only in the sumatriptan condition, whereas activation of somatosensory cortices was similar in both conditions. Soft brush stroking on the palm (n=6) was equally pleasant in both conditions. One possible mechanism for the activation of pain processing regions by brush stroking is sensitization of nociceptors by sumatriptan. Another possibility is inhibition of a recently discovered system of low-threshold unmyelinated tactile (CT) afferents that are present in hairy skin only, project to posterior insular cortex, and serve affective aspects of tactile sensation. An inhibition of impulse transmission in the CT system by sumatriptan could disinhibit nociceptive signalling and make light touch less pleasant. This latter alternative is consistent with the observed reduction in posterior insular cortex activation and the selective effects of stimulation on hairy compared to glabrous skin, which are not explained by the nociceptor sensitization account.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The multimodal properties of the human somatosensory system continue to be unravelled. There is mounting evidence that one of these submodalities-touch-has another dimension, providing not only its well-recognized discriminative input to the brain, but also an affective input. It has long been recognized that touch plays an important role in many forms of social communication and a number of theories have been proposed to explain observations and beliefs about the "power of touch." Here, we propose that a class of low-threshold mechanosensitive C fibers that innervate the hairy skin represent the neurobiological substrate for the affective and rewarding properties of touch.
    Neuron 05/2014; 82(4):737-755. DOI:10.1016/j.neuron.2014.05.001 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tactile interactions with our environment stimulate afferent fibers within the skin, which deliver information about sensations of pain, texture, itch and other feelings to the brain as a comprehensive sense of self. These tactile interactions can stimulate brain regions involved in interoception and reward processing. This study examined subjective, behavioral, and neural processing as a function of age during stimulation of A-beta (Aβ) and C tactile (CT) afferents using a soft brush stroke task. 16 adolescents (ages 15-17), 22 young adults (ages 20-28), and 20 mature adults (ages 29-55) underwent a simple continuous performance task while periodically anticipating and experiencing a soft touch to the palm or forearm, during functional magnetic resonance imaging (fMRI). fMRI results showed that adolescents displayed greater bilateral posterior insula activation than young and mature adults across all conditions and stimulus types. Adolescents also demonstrated greater bilateral posterior insula activation than young and mature adults specifically in response to the soft touch condition. Adolescents also exhibited greater activation than mature adults in bilateral inferior frontal gyrus and striatum during the soft touch condition. However, mature adults showed greater striatum activation than adolescents and young adults during anticipation. In the left anterior cingulate cortex, mature adults exhibited greater activation than adolescents and young adults when anticipating the upcoming touch. These results support the hypothesis that adolescents show an exaggerated neural response to pleasant stimulation of afferents, which may have profound effects on how they approach or avoid social and risky situations. In particular, heightened interoceptive reactivity to pleasant stimuli might cause adolescents to seek experiences that are associated with pleasant stimulation.
    Frontiers in Behavioral Neuroscience 01/2014; 8:52. DOI:10.3389/fnbeh.2014.00052 · 4.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: The current review gives an overview about recent advances in neuroimaging studies with specific emphasis on pharmacological modulation of pain and headache. Further, we want to highlight how imaging methods have changed our understanding of chronic pain and discuss how pharmacological MRI could lead to new insights into underlying mechanisms of headache and pain. RECENT FINDINGS: Several studies from different imaging laboratories have highlighted the outstanding role of imaging in getting a deeper insight regarding the central mechanisms of drugs. Neuroimaging techniques start to unravel how analgesic drugs, antidepressants or NSAIDs act on pain perception and in particular on central pain processes. Furthermore, the studies included in this review show how context dependent drugs act and how differently they reveal their action in the human brain. SUMMARY: Imaging techniques give us the opportunity to gain a better understanding of drug processes in the central nervous system and help to understand where drugs reveal their therapeutic effect. While some substances work on the emotional-affective component of pain, others modulate sensory-discriminative pain pathways. Especially in the field of headache research, still a lot has to be done to understand how preventatives and acute medication modulate the human brain. Future studies should also replicate and extend recent findings.
    Current opinion in neurology 03/2013; DOI:10.1097/WCO.0b013e32836085df · 5.73 Impact Factor