Immunobiological role of llama heavy-chain antibodies against a bacterial beta-lactamase

Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
Veterinary Immunology and Immunopathology (Impact Factor: 1.75). 07/2007; 117(3-4):173-82. DOI: 10.1016/j.vetimm.2007.03.003
Source: PubMed

ABSTRACT In 1993, a fraction of antibodies (Abs) devoid of L chain was found naturally occurring in the Camelidae. They were found to lack L chains, as well as the first constant heavy-chain domain (CH(1)) and therefore they were named "heavy-chain Abs" (HCAbs). Subsequent studies focused on the functional, structural and biochemical properties of recombinant variable fragments (rVHHs) of HCAbs. It was stated that rVHHs have an augmented capacity to interact with "partially hidden" epitopes, like enzymes active sites, and have an increased stability to thermal and chemical aggression. It has been suggested that these unconventional Abs could represent an evolutionary advantage, being more efficient than conventional Abs to inhibit microbial enzymes, and thus exerting a more protective immune response against pathogens. The present work focuses on the immunobiological role of HCAbs, in their capacity to inhibit microbial enzymes. Two animal models were selected, comprising a model for common vertebrates without HCAbs (rabbits), and a model for vertebrates with both conventional and unconventional Abs (Lama glama). A recombinant bacterial beta-lactamase (CTX-M-2) was selected as the microbial enzymatic antigen. After conventional immunization schedules, neither serum titers nor serum inhibitory capacity showed significant differences when rabbits and llamas were compared. These results indicate that the a priori assumption that the adaptive immune system of camelids could be better "prepared" to respond to bacterial enzymes because of the presence of HCAbs, is not always accurate. Furthermore, when the different llama antibody isotypes and subclasses were purified, it was demonstrated that the inhibitory capacity of total serum was due exclusively to IgG(1). HCAbs not only failed to inhibit CTX-M-2, but instead they activated its enzymatic activity. Altogether, these results indicate that the hypotheses extrapolated from the rVHHs properties need to be revised; the real role of HCAbs in vivo remains unknown, as well as their evolutionary cause.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanobodies are the smallest fragments of naturally occurring single-domain antibodies that have evolved to be fully functional in the absence of a light chain. Conventional antibodies are glycoproteins comprising two heavy and two light chains. Surprisingly, all members of the Camelidae family possess a fraction of antibodies devoid of both light chains and the first constant domain. These types of antibodies are known as heavy-chain antibody (HcAb) nanobodies. There are three subclasses of IgG in dromedaries, namely IgG1, IgG2, and IgG3 of which IgG2 and IgG3 are of the HcAb type. These heavy chain antibodies constitute approximately 50% of the IgG in llama serum and as much as 75% of the IgG in camel serum. In the present work, the different IgG subclasses from an immunized camel (Camelus dromedarius) with divalent diphtheria-tetanus vaccine were purified using their different affinity for protein A and protein G and their absorbance measured at 280 nm. Purity control and characterization by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis of IgG subclasses was done under reducing conditions. Protein bands were visualized after staining with Coomassie Blue, showing two bands at 50 kDa and 30 kDa for IgG1, while IgG2 and IgG3 produced only one band at 46 kDa and 43 kDa, respectively. An enzyme-linked immunosorbent assay test using diphtheria toxin and purified IgG subclasses from the immunized camel were performed to evaluate their efficiency. Compared with conventional IgG1, heavy chain antibodies (nanobodies) were shown to be more efficient in binding to diphtheria toxin antigen. This study revealed the possibility of using IgG2 and IgG3 nanobodies as an effective antitoxin for the treatment of diphtheria in humans.
    Nanotechnology, Science and Applications 01/2010; 3:29-35. DOI:10.2147/NSA.S9591
  • [Show abstract] [Hide abstract]
    ABSTRACT: Llamas possess unique subclasses of antibodies that lack light chains, and thus are made by the pairing of two heavy chains. IgG was purified from two llamas which had been immunized with trinitrobenzene-keyhole limpet hemocyanin. Conventional IgG1 and heavy chain IgG2 and IgG3 subclasses were fractionated using affinity chromatography. The effectiveness of heavy chain antibodies for the detection of trinitrotoluene (TNT) using a competitive fluid array immunoassay was evaluated and compared to both the llama IgG1 as well as a murine monoclonal anti-TNT antibody. It was found that heavy chain antibody bound TNT with selectivity similar to conventional antibodies, yet the heavy chain antibodies possessed greater thermal stability. The titer of the heavy chain antibodies however was found to be 10-fold lower than the IgG1; thus analytical assays were best demonstrated using the llama IgG1 conventional antibody. The TNT competitive immunoassay on the Luminex fluid analyzer had a dynamic range from ∼ 100 ng/mL to 10 μg/mL. Utilizing the same two-step competitive assay format the dynamic range of the monoclonal antibody was found to have a broad range (1 ng/mL to 1 μg/mL). This method was demonstrated on TNT contaminated soil extracts using both the llama IgG1 and the mouse monoclonal validating the utility of method for analysis of field samples.
    Journal of Immunological Methods 11/2008; DOI:10.1016/j.jim.2008.08.001 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lama immunoglobulins consist of conventional antibody (IgG1) and unique forms that lack light chains, called heavy chain antibodies (IgG2 and IgG3). These unusual antibodies possess unique properties ideal for diagnostics and therapeutics. To evaluate the IgG from a llama immunised with botulinum complex toxoids A through F each IgG subclass was tested as capture and recognition ligand in xMAP fluid array immunoassays. The optimal combination, IgG3 capture and IgG2 tracer, detected as low as 64 pg/ml of BoNT/A complex toxoid. Also, heavy chain antibodies were shown to bind BoNT as effectively as conventional IgG1, while possessing much greater thermal stability. [Received 15 October; Accepted 28 December 2007]
    The Botulinum J 01/2008; 1(1). DOI:10.1504/TBJ.2008.018953