Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation.

South Carolina Cancer Center, Columbia, SC, USA.
Bone Marrow Transplantation (Impact Factor: 3.47). 06/2007; 39(12):751-7. DOI: 10.1038/sj.bmt.1705650
Source: PubMed

ABSTRACT Allogeneic stem cell transplantation (ASCT) has improved leukemia-free survival (LFS) in many but not all patients with acute leukemia. This is an eight-year follow-up to our previous study showing a survival advantage to patients with an increased gammadelta T cells following ASCT. gammadelta T cell levels were collected prospectively in 153 patients (acute lymphoblastic leukemia (ALL) n = 77; acute myelogenous leukemia (AML) n = 76) undergoing partially mismatched related donor ASCT. Median age was 22 years (1-59), and 62% of the patients were in relapse at transplant. Patient-donor human leukocyte antigen (HLA) disparity of three antigens was 37% in the graft-versus-host disease (GvHD) and 29% in the rejection directions. All patients received a partially T cell-depleted graft using T10B9 (n = 46) or OKT3 (n = 107). Five years LFS and overall survival (OS) of patients with increased gammadelta compared to those with normal/decreased numbers were 54.4 vs 19.1%; P < 0.0003, and 70.8 vs 19.6% P < 0.0001, respectively, with no difference in GvHD (P = 0.96). In a Cox multivariate analysis, normal/decreased gammadelta (hazard ratio (HR) 4.26, P = 0.0002) and sex mismatch (HR 1.45 P=0.049) were associated with inferior LFS. In conclusion, gammadelta T cells may facilitate a graft-versus-leukemia (GvL) effect, without causing GvHD. Further evaluations of this effect may lead to specific immunotherapy for patients with refractory leukemia.

Download full-text


Available from: Lawrence S Lamb, Apr 04, 2014
  • Source
    Biology of Blood and Marrow Transplantation 02/2015; 21(2):S149-S150. DOI:10.1016/j.bbmt.2014.11.211 · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allogeneic stem cell transplantation (allo-SCT) has so far been the most effective immunotherapy for hematological malignancies. However, it is becoming increasingly clear that the immunotherapeutic concepts underlying allo-SCT, as well as the traditional dissection of the immune system into innate and adaptive arms, need substantial refinement. More and more cell types migrate into the interface between innate and adaptive immunity, creating new terms such as innate-like lymphocytes. These innate-like cells, which include natural killer (NK) cells and γδT-cells, could provide unique advantages to therapeutic interventions aimed at treating hematological malignancies, including protection against tumor relapse and viral infections without causing harmful graft-versus-host disease (GVHD). Recent molecular and conceptual insights into these subpopulations have opened new avenues to exploit their exciting features for the development of new compounds and to revisit current therapeutic standards in the treatment of hematological cancers. This review therefore aims to discuss the rapid progress in the understanding of molecular mechanisms by which NK cells and γδT-cells recognize malignancies and viral infections, and the value of this increasing knowledge to complement the battle against life-threatening complications of current strategies to treat cancer.Leukemia accepted article preview online, 18 December 2013. doi:10.1038/leu.2013.378.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 12/2013; DOI:10.1038/leu.2013.378 · 9.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytomegalovirus (CMV) is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αβ and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αβ T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αβ T cell compromised patients.
    PLoS Pathogens 02/2015; 11(3):e1004702. DOI:10.1371/journal.ppat.1004702 · 8.06 Impact Factor