Article

Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI

Department of Radiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
Neurobiology of aging (Impact Factor: 4.85). 09/2008; 29(9):1285-95. DOI: 10.1016/j.neurobiolaging.2007.03.004
Source: PubMed

ABSTRACT The vitamin E and donepezil trial for the treatment of amnestic mild cognitive impairment (MCI) was conducted at 69 centers in North America; 24 centers participated in an MRI sub study. The objective of this study was to evaluate the effect of treatment on MRI atrophy rates; and validate rate measures from serial MRI as indicators of disease progression in multi center therapeutic trials for MCI. Annual percent change (APC) from baseline to follow-up was measured for hippocampus, entorhinal cortex, whole brain, and ventricle in the 131 subjects who remained in the treatment study and completed technically satisfactory baseline and follow-up scans. Although a non-significant trend toward slowing of hippocampal atrophy rates was seen in APOE is an element of 4 carriers treated with donepezil; no treatment effect was confirmed for any MRI measure in either treatment group. For each of the four brain atrophy rate measures, APCs were greater in subjects who converted to AD than non-converters, and were greater in APOE is an element of 4 carriers than non-carriers. MRI APCs and changes in cognitive test performance were uniformly correlated in the expected direction (all p<0.000). Results of this study support the feasibility of using MRI as an outcome measure of disease progression in multi center therapeutic trials for MCI.

0 Followers
 · 
192 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the need to develop a successful disease-modifying treatment for Alzheimer’s disease (AD) becomes more urgent, imaging is increasingly used in therapeutic trials. We provide an overview of how the different imaging modalities are used in AD studies and the current regulatory guidelines for their use in clinical trials as endpoints. We review the current literature for results of imaging endpoints of efficacy and safety in published clinical trials. We start with trials in mild to moderate AD, where imaging (largely magnetic resonance imaging (MRI)) has long played a role in inclusion and exclusion criteria; more recently, MRI has been used to identify adverse events and to measure rates of brain atrophy. The advent of amyloid imaging using positron emission tomography has led to trials incorporating amyloid measurements as endpoints and incidentally to the recognition of the high proportion of amyloid-negative individuals that may be recruited into these trials. Ongoing and planned trials now commonly include multimodality imaging: amyloid positron emission tomography, MRI and other modalities. At the same time, the failure of recent large profile trials in mild to moderate AD together with the realisation that there is a long prodromal period to AD has driven a push to move studies to earlier in the disease. Imaging has particularly important roles, alongside other biomarkers, in assessing efficacy because conventional clinical outcomes may have limited ability to detect treatment effects in these early stages. Electronic supplementary material The online version of this article (doi:10.1186/s13195-014-0087-9) contains supplementary material, which is available to authorized users.
    Alzheimer's Research and Therapy 12/2014; 6(9):87. DOI:10.1186/s13195-014-0087-9 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Impaired structure and function of the hippocampus is a valuable predictor of progression from amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD). As a part of the medial temporal lobe memory system, the hippocampus is one of the brain regions affected earliest by AD neuropathology, and shows progressive degeneration as aMCI progresses to AD. Currently, no validated biomarkers can precisely predict the conversion from aMCI to AD. Therefore, there is a great need of sensitive tools for the early detection of AD progression. In this review, we summarize the specific structural and functional changes in the hippocampus from recent aMCI studies using neurophysiological and neuroimaging data. We suggest that a combination of advanced multi-modal neuroimaging measures in discovering biomarkers will provide more precise and sensitive measures of hippocampal changes than using only one of them. These will potentially affect early diagnosis and disease-modifying treatments. We propose a new sequential and progressive framework in which the impairment spreads from the integrity of fibers to volume and then to function in hippocampal subregions. Meanwhile, this is likely to be accompanied by progressive impairment of behavioral and neuropsychological performance in the progression of aMCI to AD.
    Neuroscience Bulletin 01/2015; 31(1). DOI:10.1007/s12264-014-1490-8 · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) has a complex and progressive neurodegenerative phenotype, with hypometabolism and impaired mitochondrial bioenergetics among the earliest pathogenic events. Bioenergetic deficits are well documented in preclinical models of mammalian aging and AD, emerge early in the prodromal phase of AD, and in those at risk for AD. This review discusses the importance of early therapeutic intervention during the prodromal stage that precedes irreversible degeneration in AD. Mechanisms of action for current mitochondrial and bioenergetic therapeutics for AD broadly fall into the following categories: 1) glucose metabolism and substrate supply; 2) mitochondrial enhancers to potentiate energy production; 3) antioxidants to scavenge reactive oxygen species and reduce oxidative damage; 4) candidates that target apoptotic and mitophagy pathways to either remove damaged mitochondria or prevent neuronal death. Thus far, mitochondrial therapeutic strategies have shown promise at the preclinical stage but have had little-to-no success in clinical trials. Lessons learned from preclinical and clinical therapeutic studies are discussed. Understanding the bioenergetic adaptations that occur during aging and AD led us to focus on a systems biology approach that targets the bioenergetic system rather than a single component of this system. Bioenergetic system-level therapeutics personalized to bioenergetic phenotype would target bioenergetic deficits across the prodromal and clinical stages to prevent and delay progression of AD.
    Journal of the American Society for Experimental NeuroTherapeutics 12/2014; 12(1). DOI:10.1007/s13311-014-0324-8 · 3.88 Impact Factor

Full-text (2 Sources)

Download
41 Downloads
Available from
May 21, 2014