Comparison of bioactivity between GSM 900 MHz and DCS 1800 MHz mobile telephony radiation.

Department of Cell Biology and Biophysics, University of Athens. Athens. Greece.
Electromagnetic Biology and Medicine (Impact Factor: 0.77). 02/2007; 26(1):33-44. DOI: 10.1080/15368370701205644
Source: PubMed

ABSTRACT An increasing number of studies find that pulsed Radio Frequency (RF), electromagnetic radiation of both systems of digital mobile telephony, established and commonly used in Europe during the last years, GSM 900 MHz (Global System for Mobile telecommunications) and DCS 1800 MHz (Digital Cellular System), exert intense biological action on different organisms and cells (Hardell et al., 2006; Hyland, 2000; Kundi, 2004; Panagopoulos et al., 2004, 2007). The two types of cellular telephony radiation use different carrier frequencies and give different frequency spectra, but they usually also differ in intensity, as GSM 900 MHz antennas operate at about double the power output than the corresponding DCS 1800 MHz ones. In our present experiments, we used a model biological system, the reproductive capacity of Drosophila melanogaster, to compare the biological activity between the two systems of cellular mobile telephony radiation. Both types of radiation were found to decrease significantly and non thermally the insect's reproductive capacity, but GSM 900 MHz seems to be even more bioactive than DCS 1800 MHz. The difference seems to be dependent mostly on field intensity and less on carrier frequency.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: The impact of electromagnetic fields on health is of increasing scientific interest. The aim of this study was to examine how the Drosophila melanogaster animal model is affected when exposed to portable or mobile phone fields. METHODS/RESULTS: Two experiments have been designed and performed in the same laboratory conditions. Insect cultures were exposed to the near field of a 2G mobile phone (the GSM 2G networks support and complement in parallel the 3G wide band or in other words the transmission of information via voice signals is served by the 2G technology in both mobile phones generations) and a 1880 MHz cordless phone both digitally modulated by human voice. Comparison with advanced statistics of the egg laying of the second generation exposed and non-exposed cultures showed limited statistical significance for the cordless phone exposed culture and statistical significance for the 900 MHz exposed insects. We calculated by physics, simulated and illustrated in three dimensional figures the calculated near fields of radiation inside the experimenting vials and their difference. Comparison of the power of the two fields showed that the difference between them becomes null when the experimental cylinder radius and the height of the antenna increase. CONCLUSIONS/SIGNIFICANCE: Our results suggest a possible radiofrequency sensitivity difference in insects which may be due to the distance from the antenna or to unexplored intimate factors. Comparing the near fields of the two frequencies bands, we see similar not identical geometry in length and height from the antenna and that lower frequencies tend to drive to increased radiofrequency effects.
    PLoS ONE 11/2014; 9(11-11):e112139. DOI:10.1371/journal.pone.0112139 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present experiments, the effect of 50-Hz alternating magnetic field on Drosophila melanogaster reproduction was studied. Newly eclosed insects were separated into identical groups of ten males and ten females and exposed to three different intensities of the ELF magnetic field (1, 11, and 21 G) continuously during the first 5 days of their adult lives. The reproductive capacity was assessed by the number of F1 pupae according to a well-defined protocol of ours. The magnetic field was found to decrease reproduction by up to 4.3 %. The effect increased with increasing field intensities. The decline in reproductive capacity was found to be due to severe DNA damage (DNA fragmentation) and consequent cell death induction in the reproductive cells as determined by the TUNEL assay applied during early and mid-oogenesis (from germarium to stage 10) where physiological apoptosis does not occur. The increase in DNA damage was more significant than the corresponding decrease in reproductive capacity (up to ~7.5 %). The TUNEL-positive signal denoting DNA fragmentation was observed exclusively at the two most sensitive developmental stages of oogenesis: the early and mid-oogenesis checkpoints (i.e. region 2a/2b of the germarium and stages 7-8 just before the onset of vitellogenesis)-in contrast to exposure to microwave radiation of earlier work of ours in which the DNA fragmentation was induced at all developmental stages of early and mid-oogenesis. Moreover, the TUNEL-positive signal was observed in all three types of egg chamber cells, mainly in the nurse and follicle cells and also in the oocyte, in agreement with the microwave exposure of our earlier works. According to previous reports, cell death induction in the oocyte was observed only in the case of microwave exposure and not after exposure to other stress factors as toxic chemicals or food deprivation. Now it is also observed for the first time after ELF magnetic field exposure. Finally, in contrast to microwave exposure of previous experiments of ours in which the germarium checkpoint was found to be more sensitive than stage 7-8, in the magnetic field exposure of the present experiments the mid-oogenesis checkpoint was found to be more sensitive than the germarium.
    Cell biochemistry and biophysics 03/2013; 67(2). DOI:10.1007/s12013-013-9560-5 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of serious non thermal biological effects, ranging from changes in cellular function like proliferation rate changes or gene expression changes to cell death induction, decrease in the rate of melatonin production and changes in electroencephalogram patterns in humans, population declinations of birds and insects, and small but statistically significant increases of certain types of cancer, are attributed in our days to the radiations emitted by mobile telephony antennas of both handsets and base stations. This chapter reviews briefly the most important experimental, clinical and statistical findings and presents more extensively a series of experiments, concerning cell death induction on a model biological system. Mobile telephony radiation is found to decrease significantly and non thermally insect reproduction by up to 60%, after a few minutes daily exposure for only few days. Both sexes were found to be affected. The effect is due to DNA fragmentation in the gonads caused by both types of digital mobile telephony radiation used in Europe, GSM 900MHz, (Global System for Mobile telecommunications), and DCS 1800MHz, (Digital Cellular System). GSM was found to be even more bioactive than DCS, due to its higher intensity under equal conditions. The decrease in reproductive capacity seems to be non-linearly depended on radiation intensity, exhibiting a peak for intensities higher than 200 μW/cm 2 and an intensity "window" around 10μW/cm 2 were it becomes maximum. In terms of the distance from a mobile phone antenna, the intensity of this "window"corresponds under usual conditions to a distance of 20-30 cm. The importance of different parameters of the radiation like intensity, carrier frequency and pulse repetition frequency, in relation to the recorded effects are discussed. Finally, this chapter describes a plausible biophysical and biochemical mechanism which can explain the recorded effects of mobile telephony radiations on living organisms.

Full-text (2 Sources)

Available from
Dec 12, 2014