Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe

Institute of Social and Preventive Medicine, University of Basel, Switzerland.
Clinical & Experimental Allergy (Impact Factor: 4.32). 05/2007; 37(5):661-70. DOI: 10.1111/j.1365-2222.2006.02640.x
Source: PubMed

ABSTRACT Dietary interventions as a means for atopy prevention attract great interest. Some studies in rural environments claimed an inverse association between consumption of farm-produced dairy products and the prevalence of allergic diseases, but current evidence is controversial.
To investigate whether consumption of farm-produced products is associated with a lower prevalence of asthma and allergy when compared with shop-purchased products.
Cross sectional multi-centre study (PARSIFAL) including 14,893 children aged 5-13 years from five European countries (2823 from farm families and 4606 attending Steiner Schools as well as 5440 farm reference and 2024 Steiner reference children). A detailed questionnaire including a dietary component was completed and allergen-specific IgE was measured in serum.
Farm milk consumption ever in life showed a statistically significant inverse association with asthma: covariate adjusted odds ratio (aOR) 0.74 [95% confidence interval (CI) 0.61-0.88], rhinoconjunctivitis: aOR 0.56 (0.43-0.73) and sensitization to pollen and the food mix fx5 (cut-off level of >or=3.5 kU/L): aOR 0.67 (0.47-0.96) and aOR 0.42 (0.19-0.92), respectively, and sensitization to horse dander: aOR 0.50 (95% CI 0.28-0.87). The associations were observed in all four subpopulations and independent of farm-related co-exposures. Other farm-produced products were not independently related to any allergy-related health outcome.
Our results indicate that consumption of farm milk may offer protection against asthma and allergy. A deepened understanding of the relevant protective components of farm milk and a better insight into the biological mechanisms underlying this association are warranted as a basis for the development of a safe product for prevention.

Download full-text


Available from: Helen Rosenlund, Jun 27, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Results from large multicentre epidemiological studies suggest an association between the consumption of raw milk and a reduced incidence of allergy and asthma in children. Although the underlying mechanisms for this association are yet to be confirmed, researchers have investigated whether bacteria or bacterial components that naturally occur in cow's milk are responsible for modulating the immune system to reduce the risk of allergic diseases. Previous research in human and mice suggests that bacterial components derived from the maternal intestine are transported to breast milk through the bloodstream. The aim of our study was to assess whether a similar mechanism of bacterial trafficking could occur in the cow. Through the application of culture-independent methodology, we investigated the microbial composition and diversity of milk, blood and feces of healthy lactating cows. We found that a small number of bacterial OTUs belonging to the genera Ruminococcus and Bifidobacterium, and the Peptostreptococcaceae family were present in all three samples from the same individual animals. Although these results do not confirm the hypothesis that trafficking of intestinal bacteria into mammary secretions does occur in the cow, they support the existence of an endogenous entero-mammary pathway for some bacterial components during lactation in the cow. Further research is required to define the specific mechanisms by which gut bacteria are transported into the mammary gland of the cow, and the health implications of such bacteria being present in milk.
    04/2015; 3:e888. DOI:10.7717/peerj.888
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Food processing can have many beneficial effects. However, processing may also alter the allergenic properties of food proteins. A wide variety of processing methods is available and their use depends largely on the food to be processed. In this review the impact of processing (heat and non-heat treatment) on the allergenic potential of proteins, and on the antigenic (IgG-binding) and allergenic (IgE-binding) properties of proteins has been considered. A variety of allergenic foods (peanuts, tree nuts, cows' milk, hens' eggs, soy, wheat and mustard) have been reviewed. The overall conclusion drawn is that processing does not completely abolish the allergenic potential of allergens. Currently, only fermentation and hydrolysis may have potential to reduce allergenicity to such an extent that symptoms will not be elicited, while other methods might be promising but need more data. Literature on the effect of processing on allergenic potential and the ability to induce sensitisation is scarce. This is an important issue since processing may impact on the ability of proteins to cause the acquisition of allergic sensitisation, and the subject should be a focus of future research. Also, there remains a need to developed robust and integrated methods for the risk assessment of food allergenicity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
    Food and Chemical Toxicology 03/2015; 80. DOI:10.1016/j.fct.2015.03.005 · 2.61 Impact Factor
  • Source
    Atopic Dermatitis - Disease Etiology and Clinical Management, 02/2012; , ISBN: 978-953-51-0110-9