The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation.

Department of Surgery, McGill University Health Cener and Royal Victoria Hospital, Quebec, Canada.
American Journal Of Pathology (Impact Factor: 4.6). 06/2007; 170(5):1781-92. DOI: 10.2353/ajpath.2007.060886
Source: PubMed

ABSTRACT Inflammation can play a regulatory role in cancer progression and metastasis. Previously, we have shown that metastatic tumor cells entering the liver trigger a proinflammatory response involving Kupffer cell-mediated release of tumor necrosis factor-alpha and the up-regulation of vascular endothelial cell adhesion receptors, such as E-selectin. Here, we analyzed spatio-temporal aspects of the ensuing tumor-endothelial cell interaction using human colorectal carcinoma CX-1 and murine carcinoma H-59 cells and a combination of immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. E-selectin expression was evident mainly on sinusoidal vessels by 6 and 10 hours, respectively, following H-59 and CX-1 inoculation, and this corresponded to a stabilization of the number of tumor cells within the sinuses. Tumor cells arrested in E-selectin(+) vessels and appeared to flatten and traverse the vessel lining, away from sites of intense E-selectin staining. This process was evident by 8 (H-59) and 12 (CX-1) hours after inoculation, coincided with increased endothelial vascular cell adhesion molecule-1 expression, and involved tumor cell attachment in areas of intense vascular cell adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 expression. Nonmetastatic (human) MIP-101 and (murine) M-27 cells induced a weaker response and could not be seen to extravasate. The results show that metastatic tumor cells can alter the hepatic microvasculature and use newly expressed endothelial cell receptors to arrest and extravasate.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the United States and worldwide. Our studies have previously shown an increase in metastatic burden in steatotic vs. normal livers using a mouse model of diet induced steatosis. In the present study we aim to identify and evaluate the molecular factors responsible for this increase in tumor burden. We assessed changes in expression of a panel of matrix metalloproteinases (MMPs) using qRT-PCR between normal and steatotic livers and validated them with western blot analysis of protein levels. To evaluate the role of MMP13 on tumor development, we utilized a splenic injection model of liver metastasis in Wildtype and Mmp13 deficient mice, using either parental or stable Mmp13 knockdown cell lines. Further, to evaluate changes in the ability of tumor cells to extravasate we utilized whole organ confocal microscopy to identify individual tumor cells relative to the vasculature. MTT, migration and invasion assays were performed to evaluate the role of tumor derived MMP13 on hallmarks of cancer in vitro. We found that MMP13 was significantly upregulated in the steatotic liver both in mice as well as human patients with NAFLD. We showed a decrease in metastatic tumor burden in Mmp13-/- mice compared to wildtype mice, explained in part by a reduction in the number of tumor cells extravasating from the hepatic vasculature in the Mmp13-/- mice compared to wildtype mice. Additionally, loss of tumor derived MMP13 through stable knockdown in tumor cell lines lead to decreased migratory and invasive properties in vitro and metastatic burden in vivo. This study demonstrates that stromal as well as tumor derived MMP13 contribute to tumor cell extravasation and establishment of metastases in the liver microenvironment.
    Molecular Cancer 02/2015; 14(1). DOI:10.1186/s12943-014-0282-0 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver metastasis is a frequent occurrence in patients with breast cancer; however, the available treatments are limited and ineffective. While liver-specific homing of breast cancer cells is an important feature of metastasis, the formation of liver metastases is not random. Indeed, breast cancer cell factors contribute to the liver microenvironment. Major breakthroughs have been achieved recently in understanding breast cancer liver metastasis (BCLM). The process of liver metastasis consists of multiple steps and involves various factors from breast cancer cells and the liver microenvironment. A further understanding of the roles of breast cancer cells and the liver microenvironment is crucial to guide future work in clinical treatments. In this review we discuss the contribution of breast cancer cells and the liver microenvironment to liver metastasis, with the aim to improve therapeutic efficacy for patients with BCLM.
    Journal of Translational Medicine 12/2015; 13(1). DOI:10.1186/s12967-015-0425-0 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B7-homologue 3 (B7-H3), a recently identified immunoregulatory protein, has been shown to be overexpressed in human hepatocellular carcinoma (HCC). However, whether the dynamic expression pattern of B7-H3 contributes to early invasion of HCC is largely unknown. In addition, the biological roles of B7-H3 in HCC are still unclear. Herein, we are going to examine B7-H3 expression profile and its clinicopathological significance in primary and metastatic HCC, and further determine whether B7-H3 knockdown simulates different pathological states of HCC progression and metastasis. Using immunohistochemistry, B7-H3 expression was studied on 116 HCC containing primary and metastatic HCCs. Survival curves and log-rank tests were used to test the association of B7-H3 expression with survival. HCC cells with B7-H3 depletion were established by RNA interference to investigate the effect of B7-H3 on cell proliferation, apoptosis, migration and invasion in vitro. Statistical analysis of clinical cases revealed that B7-H3 high expression group had inclinations towards late TNM stage, the presence of vascular invasion, lymph metastasis, and the formation of microsatellite tumors. Increased intensity of tumor B7-H3 staining was detected more significantly in metastatic HCC tumors. Consistently in experiments performed in vitro, B7-H3 was able to stimulate the wound healing, metastasis and invasion of hepatoma cells by targeting epithelial-to-mesenchymal transition (EMT) via JAK2/Stat3/Slug signaling pathway, while no obvious influence on cell growth and apoptosis. B7-H3 in the regulation of the metastatic capacity of HCC cells makes itself a promising therapeutic target for anti-metastasis therapy.
    Cancer Cell International 04/2015; 15(1):45. DOI:10.1186/s12935-015-0195-z · 1.99 Impact Factor