Human hepatocyte morphology and functions in a multibore fiber bioreactor.

Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Via P. Bucci, cubo 17/C, Rende (CS), Italy.
Macromolecular Bioscience (Impact Factor: 3.74). 06/2007; 7(5):671-80. DOI: 10.1002/mabi.200600281
Source: PubMed

ABSTRACT The viability and liver specific functions of human hepatocytes in a multibore fiber bioreactor are reported. Human hepatocytes were cultured in the intraluminal compartment of the bioreactor. Human hepatocytes on the membranes maintained their round shape and showed focal adhesions as sites of interaction with the membrane surface. Cells in the bioreactor expressed liver specific functions, including synthetic and detoxification activity up to 14 d of culture. The results demonstrate that human hepatocytes cultured in the multibore fiber bioreactor are able to sustain the same in vivo liver functions in vitro.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of 3D scaffolds consisting of stacked multi-layered porous sheets featuring microchannels is proposed and investigated in this work. In this concept, the inner-porosity of the sheets allows diffusion of nutrients and signalling products between the layers whereas the microchannels facilitate nutrient supply on all layers as they provide space for the culture medium to be perfused throughout the scaffold. Besides the above, these scaffolds have excellent distribution of the cells as seeding and attaching of the cells occurs on individual layers that are subsequently stacked. In addition, these scaffolds enable gaining local data from within the scaffolds as unstacking of the stacked layers allows for determination of various parameters per layer. Here, we show the proof of this concept by culturing C2C12 pre-myoblasts and A4-4 cells on stacked Poly(l-lactic acid) (PLLA) sheets featuring microchannels. The results obtained for culturing under static conditions clearly indicate that despite inhibited cell proliferation due to nutrient limitations, diffusion between the layers takes place and cells on various layers stay viable and also affect each other. Under dynamic conditions, medium flow through the channels improves nutrient availability to the cells on the various layers, drastically increasing cell proliferation on all layers.
    Biomaterials 09/2009; 30(31):6228-39. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ideal bioartificial liver should be designed to reproduce as nearly as possible in vitro the habitat that hepatic cells find in vivo. In the present work, we investigated the in vitro perfusion condition with a view to improving the hepatic differentiation of pluripotent human liver stem cells (HLSCs) from adult liver. Tissue engineering strategies based on the cocultivation of HLSCs with hepatic stellate cells (ITO) and with several combinations of medium were applied to improve viability and differentiation. A mathematical model estimated the best flow rate for perfused cultures lasting up to 7 days. Morphological and functional assays were performed. Morphological analyses confirmed that a flow of perfusion medium (assured by the bioreactor system) enabled the in vitro organization of the cells into liver clusters even in the deeper levels of the sponge. Our results showed that, when cocultured with ITO using stem cell medium, HLSCs synthesized a large amount of albumin and the MTT test confirmed an improvement in cell proliferation. In conclusion, this study shows that our in vitro cell conditions promote the formation of clusters of HLSCs and enhance the functional differentiation into a mature hepatic population.
    Tissue Engineering Part C Methods 12/2010; 16(6):1543-51. · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rapidly developing field of tissue engineering produces living substitutes that restore, maintain or improve the function of tissues or organs. In contrast to standard therapies, the engineered products become integrated within the patient, affording a potentially permanent and specific cure of the disease, injury or impairment. Despite the great progress in the field, development of clinically relevantly sized tissues with complex architecture remains a great challenge. This is mostly due to limitations of nutrient and oxygen delivery to the cells and limited availability of scaffolds that can mimic the complex tissue architecture. This study presents the development of a multilayer tissue construct by rolling pre-seeded electrospun sheets [(prepared from poly (l-lactic acid) (PLLA) seeded with C2C12 pre-myoblast cells)] around a porous multibore hollow fibre (HF) membrane and its testing using a bioreactor. Important elements of this study are: 1) the medium permeating through the porous walls of multibore HF acts as an additional source of nutrients and oxygen to the cells, which exerts low shear stress (controllable by trans membrane pressure); 2) application of dynamic perfusion through the HF lumen and around the 3D construct to achieve high cell proliferation and homogenous cell distribution across the layers, and 3) cell migration occurs within the multilayer construct (shown using pre-labeled C2C12 cells), illustrating the potential of using this concept for developing thick and more complex tissues. Copyright © 2012 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 04/2012; · 4.43 Impact Factor


Available from
May 31, 2014