The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions.

Universität Freiburg, Medizinische Klinik II/Zentrum für Neurowissenschaften, Freiburg, Germany.
Annals of Medicine (Impact Factor: 4.73). 02/2007; 39(3):219-28. DOI: 10.1080/07853890701214881
Source: PubMed

ABSTRACT The low-density lipoprotein (LDL) receptor is the founding member of a family of seven structurally closely related transmembrane proteins (LRP1, LRP1b, megalin/LRP2, LDL receptor, very low-density lipoprotein receptor, MEGF7/LRP4, LRP8/apolipoprotein E receptor2). These proteins participate in a wide range of physiological processes, including the regulation of lipid metabolism, protection against atherosclerosis, neurodevelopment, and transport of nutrients and vitamins. While currently available data suggest that the role of the LDL receptor is limited to the regulation of cholesterol homeostasis by receptor-mediated endocytosis of lipoprotein particles, there is growing experimental evidence that the other members of the gene family have additional physiological functions as signal transducers. In this review, we focus on the latest discovered functions of two major members of this family, LRP1 and megalin/LRP2, and on the newly elucidated physiological role of a third member of the family, MEGF7/LRP4, which can also function as a modulator of diverse signaling pathways during development.

Download full-text


Available from: Philippe Boucher, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Megalin has been suggested to be involved in Alzheimer's disease (AD), mediating blood-brain barrier (BBB) transport of multiple ligands, including amyloid-β peptide (Aβ), but also neuroprotective factors. Because no transgenic model is currently available to study this concept, we have obtained transgenic mice blocking megalin expression at the BBB. These endothelial megalin deficient (EMD) mice developed increased anxiety behavior and impaired learning ability and recognition memory, similar to symptoms described in AD. Degenerating neurons were also observed in the cerebral cortex of EMD mice. In view of our findings we suggest that, in mice, megalin deficiency at the BBB leads to neurodegeneration.
    Journal of Alzheimer's disease: JAD 11/2013; 39(4). DOI:10.3233/JAD-131604 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation of the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases.
    Genes & development 01/2012; 26(2012):247-258. DOI:10.1101/gad.180885.111 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal Fe65 is a central adapter for the intracellular protein network of Alzheimer's disease related amyloid precursor protein (APP). It contains a unique tandem array of phosphotyrosine-binding (PTB) domains that recognize NPXY internalization motifs present in the intracellular domains of APP (AICD) and the low-density lipoprotein receptor-related protein LRP1 (LICD). The ternary APP/Fe65/LRP1 complex is an important mediator of APP processing and affects β-amyloid peptide production. Here we dissect by biochemical and biophysical methods the direct interactions within the ternary complex and reveal a phosphorylation-dependent insulin receptor substrate (IRS-) like interaction of the distal NPVY(4507) motif of LICD with Fe65-PTB1.
    FEBS letters 10/2011; 585(20):3229-35. DOI:10.1016/j.febslet.2011.09.028 · 3.34 Impact Factor