Mast cell degranulation activates a pain pathway underlying migraine headache

Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard Institutes of Medicine, Room 856, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Pain (Impact Factor: 5.84). 08/2007; 130(1-2):166-76. DOI: 10.1016/j.pain.2007.03.012
Source: PubMed

ABSTRACT Intracranial headaches such as that of migraine are generally accepted to be mediated by prolonged activation of meningeal nociceptors but the mechanisms responsible for such nociceptor activation are poorly understood. In this study, we examined the hypothesis that meningeal nociceptors can be activated locally through a neuroimmune interaction with resident mast cells, granulated immune cells that densely populate the dura mater. Using in vivo electrophysiological single unit recording of meningeal nociceptors in the rat we observed that degranulation of dural mast cells using intraperitoneal administration of the basic secretagogue agent compound 48/80 (2 mg/kg) induced a prolonged state of excitation in meningeal nociceptors. Such activation was accompanied by increased expression of the phosphorylated form of the extracellular signal-regulated kinase (pERK), an anatomical marker for nociceptor activation. Mast cell-induced nociceptor interaction was also associated with downstream activation of the spinal trigeminal nucleus as indicated by an increase in c-fos expression. Our findings provide evidence linking dural mast cell degranulation to prolonged activation of the trigeminal pain pathway believed to underlie intracranial headaches such as that of migraine.

Download full-text


Available from: Vanessa Kainz, Feb 20, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The purpose of the study was to examine the influence of the spatial variable magnetic field (induction: 150-300 µT, 80-150 µT, 20-80 µT; frequency 40 Hz) on neuropathic pain after tibial nerve transection. The experiments were carried out on 64 male Wistar C rats. The exposure of animals to magnetic field was performed 1 d/20 min., 5 d/week, for 28 d. Behavioural tests assessing the intensity of allodynia and sensitivity to mechanical and thermal stimuli were conducted 1 d prior to surgery and 3, 7, 14, 21 and 28 d after the surgery. The extent of autotomy was examined. Histological and immunohistochemical analysis was performed. The use of extremely low-frequency magnetic fields of minimal induction values (20-80 µT/40 Hz) decreased pain in rats after nerve transection. The nociceptive sensitivity of healthy rats was not changed following the exposition to the spatial magnetic field of the low frequency. The results of histological and immunohistochemical investigations confirm those findings. Our results indicate that extremely low-frequency magnetic field may be useful in the neuropathic pain therapy.
    Electromagnetic Biology and Medicine 06/2013; 33(1). DOI:10.3109/15368378.2013.783849 · 0.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells (MCs) are tissue resident immune cells that participate in a variety of allergic and other inflammatory conditions. In most tissues, MCs are found in close proximity to nerve endings of primary afferent neurons that signal pain (i.e. nociceptors). Activation of MCs causes the release of a plethora of mediators that can activate these nociceptors and promote pain. Although MCs are ubiquitous, conditions associated with systemic MC activation give rise primarily to two major types of pain, headache and visceral pain. In this study we therefore examined the extent to which systemic MC degranulation induced by intraperitoneal administration of the MC secretagogue compound 48/80 activates pain pathways that originate in different parts of the body and studied whether this action can lead to development of behavioral pain hypersensitivity. Using c-fos expression as a marker of central nervous system neural activation, we found that intraperitoneal administration of 48/80 leads to the activation of dorsal horn neurons at two specific levels of the spinal cord; one responsible for processing cranial pain, at the medullary/C2 level, and one that processes pelvic visceral pain, at the caudal lumbar/rostral sacral level (L6-S2). Using behavioral sensory testing, we found that this nociceptive activation is associated with development of widespread tactile pain hypersensitivity within and outside the body regions corresponding to the activated spinal levels. Our data provide a neural basis for understanding the primacy of headache and visceral pain in conditions that involve systemic MC degranulation. Our data further suggest that MC activation may lead to widespread tactile pain hypersensitivity.
    Brain Behavior and Immunity 02/2012; 26(2):311-7. DOI:10.1016/j.bbi.2011.09.016 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current rodent models of neuropathic pain produce pain hypersensitivity in almost all lesioned animals and not all identified experimental effects are pain specific. 18G needlestick-nerve-injury (NNI) to one tibial nerve of outbred Sprague-Dawley rats models the phenotype of Complex Regional Pain Syndrome (CRPS), a post-traumatic neuropathic pain syndrome, leaving roughly half of NNI rats with hyperalgesia. We compared endoneurial data from these divergent endophenotypes searching for pathological changes specifically associated with pain-behaviors. Tibial, sural, and common sciatic nerves from 12 NNI rats plus 10 nerves from sham-operated controls were removed 14 days post-surgery for morphometric analysis. PGP9.5(+) unmyelinated-fibers were quantitated in plantar hindpaw skin. Distal tibial nerves of NNI rats had endoneurial edema, 30% fewer axons, twice as many mast cells, and thicker blood-vessel walls than uninjured tibial nerves. However the only significant difference between nerves from hyperalgesic versus non-hyperalgesic NNI rats was greater endoneurial edema in hyperalgesic rats (p < 0.01). We also discovered significant axonal losses in uninjured ipsilateral sural nerves of NNI rats, demonstrating spread of neuropathy to nearby nerves formerly thought spared. Tibial and sural nerves contralateral to NNI had significant changes in endoneurial blood-vessels. Similar pathological changes have been identified in CRPS-I patients. The current findings suggest that severity of endoneurial vasculopathy and inflammation may correlate better with neuropathic pain behaviors than degree of axonal loss. Spread of pathological changes to nearby ipsilateral and contralateral nerves might potentially contribute to extraterritorial pain in CRPS.
    European journal of pain (London, England) 06/2011; 16(1):28-37. DOI:10.1016/j.ejpain.2011.05.004 · 3.22 Impact Factor