Article

The effect of the pore structure and zeta potential of porous polymer monoliths on separation performance in ion-exchange mode.

Department of Chemical and Biological Engineering and Biochemical Processing Institute, University of Missouri-Rolla, Rolla, Missouri 65409-1230, USA.
Journal of Separation Science (Impact Factor: 2.59). 04/2007; 30(5):648-57. DOI: 10.1002/jssc.200600421
Source: PubMed

ABSTRACT Most often, in bioseparations involving charged macromolecules, the chromatographic systems have low Reynolds and high Peclet numbers. For such systems, an expression is developed and presented in this work for evaluating the throughput in polymeric monoliths where ion-exchange adsorption occurs, as a function of (i) the pressure drop along the length of the monolith, (ii) the functional form and width of the throughpore-size distribution of the monolith, and (iii) the magnitude of the zeta potential on the surface of the throughpores of the monolith. Gaussian and log-normal throughpore-size distributions whose mean throughpore-size and standard deviation values are based on experimentally measured throughpore-size distribution data by mercury porosimetry employed on polymeric monoliths are used in this work, and their effect on the throughput relative to that obtained from a polymeric monolith having a uniform throughpore-size distribution is studied for different values of the ratio of the standard deviation to the mean throughpore-size. The results indicate that relatively modest increases in the throughput, when compared with the throughput that could be achieved in a polymeric monolith having a uniform throughpore-size distribution, could be obtained in polymeric monoliths having disperse throughpore-size distributions, and the magnitude of the increase becomes larger when the disperse distribution is skewed to larger throughpore sizes. Furthermore, the results of this work indicate that, under certain conditions, relatively modest increases in the throughput of a charged analyte could also be achieved by altering the value of the zeta potential on the surface of the throughpores of the monolith. Due to the difficulties inherent in controlling the functional form and width of the throughpore-size distribution during the synthesis of polymeric monoliths, it would appear to be more practical to increase the value of the throughput of a charged analyte by altering the value of the zeta potential through prudent selection of the ion-exchange surface functional groups and fine-tuned with the pH of the mobile phase. Thus, for ion-exchange chromatography systems, the zeta potential could be considered an important parameter for column designers and operators to manipulate, since its alteration could increase the through-put of a charged analyte in polymeric monoliths or in columns packed with charged particles.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular dynamics modeling and simulations are employed to study the effects of counter-ions on the dynamic spatial density distribution and total loading of immobilized ligands as well as on the pore structure of the resultant ion exchange chromatography adsorbent media. The results show that the porous adsorbent media formed by polymeric chain molecules involve transport mechanisms and steric resistances which cause the charged ligands and counter-ions not to follow stoichiometric distributions so that (i) a gradient in the local nonelectroneutrality occurs, (ii) non-uniform spatial density distributions of immobilized ligands and counter-ions are formed, and (iii) clouds of counter-ions outside the porous structure could be formed. The magnitude of these counter-ion effects depends on several characteristics associated with the size, structure, and valence of the counter-ions. Small spherical counter-ions with large valence encounter the least resistance to enter a porous structure and their effects result in the formation of small gradients in the local nonelectroneutrality, higher ligand loadings, and more uniform spatial density distributions of immobilized ligands, while the formation of exterior counter-ion clouds by these types of counter-ions is minimized. Counter-ions with lower valence charges, significantly larger sizes, and elongated shapes, encounter substantially greater steric resistances in entering a porous structure and lead to the formation of larger gradients in the local nonelectroneutrality, lower ligand loadings, and less uniform spatial density distributions of immobilized ligands, as well as substantial in size exterior counter-ion clouds. The effects of lower counter-ion valence on pore structure, local nonelectroneutrality, spatial ligand density distribution, and exterior counter-ion cloud formation are further enhanced by the increased size and structure of the counter-ion. Thus, the design, construction, and functionality of polymeric porous adsorbent media will significantly depend, for a given desirable ligand to be immobilized and represent the adsorption active sites, on the type of counter-ion that is used during the ligand immobilization process. Therefore, the molecular dynamics modeling and simulation approach presented in this work could contribute positively by representing an engineering science methodology to the design and construction of polymeric porous adsorbent media which could provide high intraparticle mass transfer and adsorption rates for the adsorbate biomolecules of interest which are desired to be separated by an adsorption process.
    The Journal of Chemical Physics 02/2014; 140(8):084901. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dynamic behavior of the breakthrough curves of a single adsorbate obtained from columns employing adsorbent media which differ from one another only on the spatial distribution of the immobilized ligands in the porous particles is examined. The spatial distributions of the immobilized ligands considered in this study are uniform and non-uniform, but the total number of immobilized ligands in the particles has the same value whether the spatial distribution is uniform or non-uniform. The results clearly show that the columns employing adsorbent particles in which the spatial distribution of the immobilized ligands is non-uniform and such that the concentration of the immobilized ligands increases monotonically from the center of the particle to the outer particle surface, exhibit (i) larger breakthrough times, (ii) steeper breakthrough curves, and (iii) higher dynamic utilization of the adsorptive capacity of the column as the superficial velocity of the flowing fluid stream in the column increases (throughput increase) than the columns using adsorbent particles in which the spatial distribution of the immobilized ligands is uniform. The importance of employing in the columns adsorbent media whose spatial ligand density distributions satisfy the mathematical property of monotonically increasing ligand concentration with increasing from the particle center radial position, will be significantly enhanced when (i) the size of the particle radius is increased, and (ii) continuous counter-current and periodic counter-current (simulated moving beds) operations are employed.
    Journal of Separation Science 09/2010; 33(17-18):2749-56. · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transport of a charged adsorbate biomolecule in a porous polymeric adsorbent medium and its adsorption onto the covalently immobilized ligands have been modeled and investigated using molecular dynamics modeling and simulations as the third part of a novel fundamental methodology developed for studying ion-exchange chromatography based bioseparations. To overcome computational challenges, a novel simulation approach is devised where appropriate atomistic and coarse grain models are employed simultaneously and the transport of the adsorbate is characterized through a number of locations representative of the progress of the transport process. The adsorbate biomolecule for the system studied in this work changes shape, orientation, and lateral position in order to proceed toward the site where adsorption occurs and exhibits decreased mass transport coefficients as it approaches closer to the immobilized ligand. Furthermore, because the ligands are surrounded by counterions carrying the same type of charge as the adsorbate biomolecule, it takes the biomolecule repeated attempts to approach toward a ligand in order to displace the counterions in the proximity of the ligand and to finally become adsorbed. The formed adsorbate-ligand complex interacts with the counterions and polymeric molecules and is found to evolve slowly and continuously from one-site (monovalent) interaction to multisite (multivalent) interactions. Such a transition of the nature of adsorption reduces the overall adsorption capacity of the ligands in the adsorbent medium and results in a type of surface exclusion effect. Also, the adsorption of the biomolecule also presents certain volume exclusion effects by not only directly reducing the pore volume and the availability of the ligands in the adjacent regions, but also causing the polymeric molecules to change to more compact structures that could further shield certain ligands from being accessible to subsequent adsorbate molecules. These findings have significant practical implications to the design and construction of polymeric porous adsorbent media for effective bioseparations and to the synthesis and operation of processes employed in the separation of biomolecules. The modeling and analysis methods presented in this work could also be suitable for the study of biocatalysis where an enzyme is immobilized on the surface of the pores of a porous medium.
    The Journal of Chemical Physics 08/2010; 133(8):084904. · 3.12 Impact Factor