Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5' elements.

Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
American Journal of Respiratory Cell and Molecular Biology (Impact Factor: 4.11). 10/2007; 37(3):273-90. DOI: 10.1165/rcmb.2005-0460OC
Source: PubMed

ABSTRACT Mucus hypersecretion contributes to morbidity and mortality in many obstructive lung diseases. Gel-forming mucins are the chief glycoprotein components of airway mucus, and elevated expression of these during mucous metaplasia precedes the hypersecretory phenotype. Five orthologous genes (MUC2, MUC5AC, MUC5B, MUC6, and MUC19) encode the mammalian gel-forming mucin family, and several have been implicated in asthma, cystic fibrosis, and chronic obstructive pulmonary disease pathologies. However, in the absence of a comprehensive analysis, their relative contributions remain unclear. Here, we assess the expression of the entire gel-forming mucin gene family in allergic mouse airways and show that Muc5ac is the predominant gel-forming mucin induced. We previously showed that the induction of mucous metaplasia in ovalbumin-sensitized and -challenged mouse lungs occurs within bronchial Clara cells. The temporal induction and localization of Muc5ac transcripts correlate with the induced expression and localization of mucin glycoproteins in bronchial airways. To better understand the tight regulation of Muc5ac expression, we analyzed all available 5'-flanking sequences of mammalian MUC5AC orthologs and identified evolutionarily conserved regions within domains proximal to the mRNA coding region. Analysis of luciferase reporter gene activity in a mouse transformed Clara cell line demonstrates that this region possesses strong promoter activity and harbors multiple conserved transcription factor-binding motifs. In particular, SMAD4 and HIF-1alpha bind to the promoter, and mutation of their recognition motifs abolishes promoter function. In conclusion, Muc5ac expression is the central event in antigen-induced mucous metaplasia, and phylogenetically conserved 5' noncoding domains control its regulation.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human intestinal parasite Schistosoma mansoni causes a chronic disease, schistosomiasis or bilharzia. According to the current literature, the parasite induces vigorous immune responses that are controlled by Th2 helper cells at the expense of Th1 helper cells. The latter cell type is, however, indispensable for anti-viral immune responses. Remarkably, there is no reliable literature among 230 million patients worldwide describing defective anti-viral immune responses in the upper respiratory tract, for instance against influenza A virus or against respiratory syncitial virus (RSV). We therefore re-examined the immune response to a human isolate of S. mansoni and challenged mice in the chronic phase of schistosomiasis with influenza A virus, or with pneumonia virus of mice (PVM), a mouse virus to model RSV infections. We found that mice with chronic schistosomiasis had significant, systemic immune responses induced by Th1, Th2, and Th17 helper cells. High serum levels of TNF-a, IFN-c, IL-5, IL-13, IL-2, IL-17, and GM-CSF were found after mating and oviposition. The lungs of diseased mice showed low-grade inflammation, with goblet cell hyperplasia and excessive mucus secretion, which was alleviated by treatment with an anti-TNF-a agent (Etanercept). Mice with chronic schistosomiasis were to a relative, but significant extent protected from a secondary viral respiratory challenge. The protection correlated with the onset of oviposition and TNF-a-mediated goblet cell hyperplasia and mucus secretion, suggesting that these mechanisms are involved in enhanced immune protection to respiratory viruses during chronic murine schistosomiasis. Indeed, also in a model of allergic airway inflammation mice were protected from a viral respiratory challenge with PVM. Copyright: ß 2014 Scheer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files. Funding: SS was supported by the Fonds National de la Recherche, Luxembourg ( (PHD-08-045-RE). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS ONE 11/2014; DOI:10.1371/journal.pone.0112469 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MUC5AC is a well-known gastric differentiation marker, which has been frequently used for the classification of stomach cancer. Immunohistochemistry revealed that expression of MUC5AC decreases accompanied with increased malignant property of gastric mucosa, which further suggests the importance of MUC5AC gene regulation. Alignment of the 5'-flanking regions of MUC5AC gene of 13 mammal species denoted high homology within 200 bp upstream of the coding region. Luciferase activities of the deletion constructs containing upstream 451 bp or shorter fragments demonstrated that 15 bp region between -111 and -125 bp plays a critical role on MUC5AC promoter activity in gastrointestinal cells. We found a putative Gli-binding site in this 15 bp sequence, and named this region a highly conserved region containing a Gli-binding site (HCR-Gli). Overexpression of Gli homologs (Gli1, Gli2, and Gli3) clearly enhanced MUC5AC promoter activity. Exogenous modulation of Gli1 and Gli2 also affected the endogenous MUC5AC gene expression in gastrointestinal cells. Chromatin immunoprecipitation assays demonstrated that Gli1 directly binds to HCR-Gli: Gli regulates MUC5AC transcription via direct protein-DNA interaction. Conversely, in the 30 human cancer cell lines and various normal tissues, expression patterns of MUC5AC and Gli did not coincide wholly: MUC5AC showed cell line-specific or tissue-specific expression whereas Gli mostly revealed ubiquitous expression. Luciferase promoter assays suggested that the far distal MUC5AC promoter region containing upstream 4010 bp seems to have several enhancer elements for gene transcription. In addition, treatments with DNA demethylation reagent and/or histone deacetylase inhibitor induced MUC5AC expression in several cell lines that were deficient in MUC5AC expression. These results indicated that Gli is necessary but not sufficient for MUC5AC expression: namely, the multiple regulatory mechanisms should work in the distal promoter region of MUC5AC gene.
    PLoS ONE 08/2014; 9(8):e106106. DOI:10.1371/journal.pone.0106106 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Dec 2, 2014