Article

iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences.

School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
Bioinformatics (Impact Factor: 4.62). 08/2007; 23(13):1580-7. DOI: 10.1093/bioinformatics/btm147
Source: PubMed

ABSTRACT Immunoglobulin heavy chain (IGH) genes in mature B lymphocytes are the result of recombination of IGHV, IGHD and IGHJ germline genes, followed by somatic mutation. The correct identification of the germline genes that make up a variable VH domain is essential to our understanding of the process of antibody diversity generation as well as to clinical investigations of some leukaemias and lymphomas.
We have developed iHMMune-align, an alignment program that uses a hidden Markov model (HMM) to model the processes involved in human IGH gene rearrangement and maturation. The performance of iHMMune-align was compared to that of other immunoglobulin gene alignment utilities using both clonally related and randomly selected IGH sequences. This evaluation suggests that iHMMune-align provides a more accurate identification of component germline genes than other currently available IGH gene characterization programs.
iHMMune-align cross-platform Java executable and web interface are freely available to academic users and can be accessed at http://www.emi.unsw.edu.au/~ihmmune/.

0 Bookmarks
 · 
59 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: B cells produce a diverse antibody repertoire by undergoing gene rearrangements. Pathogen exposure induces the clonal expansion of B cells expressing antibodies that can bind the infectious agent. To assess human B cell responses to trivalent seasonal influenza and monovalent pandemic H1N1 vaccination, we sequenced gene rearrangements encoding the immunoglobulin heavy chain, a major determinant of epitope recognition. The magnitude of B cell clonal expansions correlates with an individual's secreted antibody response to the vaccine, and the expanded clones are enriched with those expressing influenza-specific monoclonal antibodies. Additionally, B cell responses to pandemic influenza H1N1 vaccination and infection in different people show a prominent family of convergent antibody heavy chain gene rearrangements specific to influenza antigens. These results indicate that microbes can induce specific signatures of immunoglobulin gene rearrangements and that pathogen exposure can potentially be assessed from B cell repertoires.
    Cell host & microbe. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The process of antibody ontogeny typically improves affinity, on-rate, and thermostability, narrows polyspecificity, and rigidifies the combining site to the conformer optimal for binding from the broader ensemble accessible to the precursor. However, many broadly-neutralizing anti-HIV antibodies incorporate unusual structural elements and recognition specificities or properties that often lead to autoreactivity. The ontogeny of 4E10, an autoreactive antibody with unexpected combining site flexibility, was delineated through structural and biophysical comparisons of the mature antibody with multiple potential precursors. 4E10 gained affinity primarily by off-rate enhancement through a small number of mutations to a highly conserved recognition surface. Controverting the conventional paradigm, the combining site gained flexibility and autoreactivity during ontogeny, while losing thermostability, though polyspecificity was unaffected. Details of the recognition mechanism, including inferred global effects due to 4E10 binding, suggest that neutralization by 4E10 may involve mechanisms beyond simply binding, also requiring the ability of the antibody to induce conformational changes distant from its binding site. 4E10 is, therefore, unlikely to be re-elicited by conventional vaccination strategies.
    PLoS Pathogens 09/2014; 10(9):e1004403. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic point mutations provide glimpses into B-cell histories, and mutation numbers generally correlate with antibody affinity. We recently proposed a model of human isotype function, based in part on mutation analysis, in which the dominant pathway of isotype switching involves B cells moving sequentially through the four immunoglobulin (Ig) G subclasses. This should result in predictable differences in affinity between isotypes, and this helps explain how different isotypes work together. The model built on analysis of rearranged immunoglobulin heavy chain sequences amplified from Papua New Guinean villagers, which showed highly significant differences in the mean number of V-REGION mutations in sequences, associated with the different IgG subclasses. To determine whether this relationship between mutation levels and isotypes is a more general phenomenon, the present study was conducted in healthy, urban residents of Sydney, Australia. VDJ sequences were generated from eight individuals, using 454 pyrosequencing, from cells expressing all isotypes except IgD and IgE. This resulted in 35 118 unique, productive VDJ sequences for the study. The data confirm that VDJ genes associated with progressively more 3' Ig heavy chain gamma (IGHG) constant region genes show increasing levels of point mutation. Mean V-REGION mutations in IgA1 and IgA2 sequences were similar. Patterns of mutations also differed between isotypes. Despite their association with T-independent responses, IgG2 sequences showed significantly more mutational evidence of antigen selection than other IgG isotypes. Antigen selection was also significantly higher in IgA2 than in IgA1 sequences, raising the possibility of a preferential switch pathway from IGHG2 to IGHA2.Immunology and Cell Biology advance online publication, 10 June 2014; doi:10.1038/icb.2014.44.
    Immunology and Cell Biology 06/2014; · 4.21 Impact Factor