Distinct functional domains in nesprin-1α and nesprin-2β bind directly to emerin and both interactions are disrupted in X-linked Emery–Dreifuss muscular dystrophy

The Randall Division of Cell and Molecular Biophysics, King's College, New Hunts House, Guy's Campus, London, UK.
Experimental Cell Research (Impact Factor: 3.25). 09/2007; 313(13):2845-57. DOI: 10.1016/j.yexcr.2007.03.025
Source: PubMed


Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1alpha and -2beta which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1alpha and residues 126 to 219 of nesprin-2beta, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously been implicated in binding to F-actin, beta-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1alpha and -2beta isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.

7 Reads
  • Source
    • "). Nesprin 3, 100 kDa, lacks an actin binding domain, but binds intermediate filaments via an interaction with plectin; while Nesprin 4 is smaller (42 kDa) and interacts with the cytoskeleton via kinesin. Some smaller nesprins co-localize and interact with the INM protein, emerin (Mislow et al., 2002; Zhang et al., 2005; Wheeler et al., 2007). Klarsicht/Anc/Syne-1 homology domain proteins also have a role in controlling nuclear size in non-plant systems (Lu et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Following the description of SAD1/UNC84 (SUN) domain proteins in higher plants, evidence has rapidly increased that plants contain a functional linker of nucleoskeleton and cytoskeleton (LINC) complex bridging the nuclear envelope (NE). While the SUN domain proteins appear to be highly conserved across kingdoms, other elements of the complex are not and some key components and interactions remain to be identified. This mini review examines components of the LINC complex, including proteins of the SUN domain family and recently identified plant Klarsicht/Anc/Syne-1 homology (KASH) domain proteins. First of these to be described were WIPs (WPP domain interacting proteins), which act as protein anchors in the outer NE. The plant KASH homologs are C-terminally anchored membrane proteins with the extreme C-terminus located in the nuclear periplasm; AtWIPs contain a highly conserved X-VPT motif at the C-terminus in contrast to PPPX in opisthokonts. The role of the LINC complex in organisms with a cell wall, and description of further LINC complex components will be considered, together with other potential plant-specific functions.
    Frontiers in Plant Science 05/2014; 5:183. DOI:10.3389/fpls.2014.00183 · 3.95 Impact Factor
  • Source
    • "Therefore, the initial, and still enticing, hypothesis was that muscle diseases associated with these mutations resulted from aberrant gene regulation. However, proteins that localize exclusively in the outer nuclear envelope and regulate the interactions between the nucleus and the cytoskeleton have recently been identified as mutated in patients with muscle disease (Wheeler et al., 2007; Zhang et al., 2007; Puckelwartz et al., 2009). Because these genes do not directly interact with the genome, these data raise the possibility that the nucleus may have a role in muscle development and function independent of its general role in gene regulation and might suggest a role for nucleus-cytoskeleton interactions and nuclear positioning in muscle development and disease pathogenesis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals, myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives: from that of the nuclei and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.
    Frontiers in Physiology 12/2013; 4:363. DOI:10.3389/fphys.2013.00363 · 3.53 Impact Factor
  • Source
    • "It has been shown that nesprin-1α and nesprin-2β isoforms interact with emerin and lamin A/C [8], [10], [11], [15] and, furthermore that nesprin-1α self-associates in an antiparallel orientation [11]. Since these isoforms bind to the same partners, we decided to investigate more closely the structural features of these two proteins. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Nesprin-1 and nesprin-2 are nuclear envelope (NE) proteins characterized by a common structure of an SR (spectrin repeat) rod domain and a C-terminal transmembrane KASH [Klarsicht-ANC-Syne-homology] domain and display N-terminal actin-binding CH (calponin homology) domains. Mutations in these proteins have been described in Emery-Dreifuss muscular dystrophy and attributed to disruptions of interactions at the NE with nesprins binding partners, lamin A/C and emerin. Evolutionary analysis of the rod domains of the nesprins has shown that they are almost entirely composed of unbroken SR-like structures. We present a bioinformatical approach to accurate definition of the boundaries of each SR by comparison with canonical SR structures, allowing for a large-scale homology modelling of the 74 nesprin-1 and 56 nesprin-2 SRs. The exposed and evolutionary conserved residues identify important pbs for protein-protein interactions that can guide tailored binding experiments. Most importantly, the bioinformatics analyses and the 3D models have been central to the design of selected constructs for protein expression. 1D NMR and CD spectra have been performed of the expressed SRs, showing a folded, stable, high content α-helical structure, typical of SRs. Molecular Dynamics simulations have been performed to study the structural and elastic properties of consecutive SRs, revealing insights in the mechanical properties adopted by these modules in the cell.
    PLoS ONE 05/2013; 8(5):e63633. DOI:10.1371/journal.pone.0063633 · 3.23 Impact Factor
Show more