Wnt3a binds to several sFRPs in the nanomolar range.

Laboratory for Cell Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 07/2007; 357(4):1119-23. DOI: 10.1016/j.bbrc.2007.04.069
Source: PubMed

ABSTRACT Secreted Frizzled-related proteins (sFRPs) are modulators of the Wnt signaling pathway that plays important roles in both embryogenesis and oncogenesis. sFRPs have been proposed to antagonize Wnt activity by binding to Wnts. However, the affinity of this binding is unknown. Here we show, using surface plasmon resonance and purified proteins, that sFRP1, sFRP2, sFRP4, and Frzb bind directly to Wnt3a with affinities in the nanomolar range. However, only sFRP1 and sFRP2 antagonize Wnt3a activity by blocking Wnt3a induced beta-catenin accumulation in L cells. Furthermore, sFRP2, but not Frzb, antagonizes Wnt3a signaling in an ES cell model of mesoderm differentiation. These results provide the first measurement of binding affinity of sFRPs for a Wnt, which together with the measurement of antagonistic activity of sFRPs could help understand how sFRPs regulate Wnt signaling.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling has been shown to be important in the patterning of the gastrulating mouse embryo, especially in axis formation. To this date, there is no clear indication that the Wnt receptors, Frizzleds (Fzds), are involved in such early specification. Moreover, at the gastrulation stage, the only Fzd with a known characterized expression pattern is Fzd8, which is expressed in the anterior visceral endoderm (aVE) (Lu et al. [2004] Gene Expr Patterns 4:569-572). Following a real time RT-PCR study to evaluate Fzd expression in the gastrulating embryo, we used whole-mount in situ hybridization to reveal new expression domains for Fzd5, Fzd7, and Fzd10. Fzd5 is expressed in the aVE and Fzd7 expression is restricted to the epiblast of the gastrulating embryo. The expression pattern of Fzd10 in the primitive streak of the gastrula suggests it has a role in mesoderm induction. We also show that the purified, secreted forms of the extracellular cysteine-rich domains (CRDs) of FZD5, Fzd7, and Fzd8 can antagonize Wnt3a-induced beta-Catenin accumulation in L-cells, whereas in mouse embryonic stem cells, these CRDs can inhibit spontaneous mesoderm formation and promote neural differentiation. Our data demonstrate that Fzd5, Fzd7, and Fzd10 are expressed in distinct domains of the gastrulating embryo, and that the CRDs of FZD5, Fzd7, and Fzd8 can regulate Wnts, indicating that Fzds interpret Wnt signals during embryonic mesoderm and neural induction.
    Developmental Dynamics 07/2007; 236(7):2011-9. DOI:10.1002/dvdy.21198 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report herein a detailed study concerning the impact of different bioconjugation and nanoformulation strategies on the in vitro targeting ability of peptide-decorated squalenoyl gemcitabine (SQdFdC) nanoparticles (NPs). NPs have been functionalized with the CKAAKN peptide, previously identified as efficient homing device within the pancreatic pathological microenvironment. Two approaches have been followed: (i) either the CKAAKN peptide was directly conjugated at the surface of preformed SQdFdC nanoparticles (conjugation after NP formation) or (ii) it was first reacted with a maleimide squalenoyl derivative before the resulting bioconjugate was co-nanoprecipitated with SQdFdC to form the peptide-decorated NPs (conjugation before NP formation). NPs were characterized with respect to mean diameter, zeta potential and stability over time. Then, their specific interaction with the sFRP-4 protein was evaluated by surface plasmon resonance. Although both the synthetic strategies allowed to formulate NPs able to interact with the corresponding receptor, enhanced target binding and better specific avidity were observed with CKAAKN-NPs functionalized before NP formation. These NPs displayed the highest cell uptake and cytotoxicity in an in vitro model of human MIA Paca-2 pancreatic cancer cells.
    Bioconjugate Chemistry 10/2014; 25(11). DOI:10.1021/bc5003423 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2007, 1179 papers were published that involved the application of optical biosensors. Reported developments in instrument hardware, assay design, and immobilization chemistry continue to improve the technology's throughput, sensitivity, and utility. Compared to recent years, the widest range of platforms, both traditional format and array-based, were used. However, as in the past, we found a disappointingly low percentage of well-executed experiments and thoughtful data interpretation. We are alarmed by the high frequency of suboptimal data and over-interpreted results in the literature. Fortunately, learning to visually recognize good--and more importantly, bad--data is easy. Using examples from the literature, we outline several features of biosensor responses that indicate experimental artifacts versus actual binding events. Our goal is to have everyone, from benchtop scientists to project managers and manuscript reviewers, become astute judges of biosensor results using nothing more than their eyes.
    Journal of Molecular Recognition 11/2008; 21(6):355-400. DOI:10.1002/jmr.928 · 2.34 Impact Factor