Article

Tissue-specific stable isotope measurements of postprandial lipid metabolism in familial combined hyperlipidaemia

Department of Clinical Chemistry, Staffordshire General Hospital, Stafford, UK.
Atherosclerosis (Impact Factor: 3.71). 04/2008; 197(1):164-70. DOI: 10.1016/j.atherosclerosis.2007.03.009
Source: PubMed

ABSTRACT The metabolic defects underlying familial combined hyperlipidaemia (FCHL) are not clearly understood. We used stable isotope techniques combined with tissue-specific measurements in adipose tissue and forearm muscle to investigate fatty acid handling by these tissues in the fasting and postprandial states.
Patients were insulin resistant as shown by higher glucose and insulin concentrations and lower muscle glucose extraction than controls. Plasma triacylglycerol (TAG) concentrations were higher in patients. Adipose tissue TAG extraction was not lower in patients than controls, although TAG clearance was lower, probably representing saturation. Following a test meal, patients showed a greater increase in chylomicron-TAG concentrations. There were no differences between FCHL patients and controls in postprandial suppression of non-esterified fatty acid (NEFA) concentrations or postprandial NEFA release, but patients had greater trapping of exogenous fatty acids in adipose tissue. 3-Hydroxybutyrate concentrations were lower in patients indicative of decreased hepatic fatty acid oxidation.
In this group of patients with FCHL, the major defect appeared to be overproduction of TAG by the liver due to decreased fatty acid oxidation, with fatty acids directed to TAG synthesis. We found no evidence of decreased lipoprotein lipase action or impaired fatty acid re-esterification in adipose tissue.

0 Bookmarks
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The increase in cardiovascular morbidity and mortality associated to insulin resistance (IR) states (obesity, metabolic syndrome, type 2 diabetes) represents a major public health problem. In IR, dyslipidemia typically include hypertriglyceridemia, low high density lipoprotein cholesterol, increased small and dense low density lipoprotein particles, and post-prandial hyperlipidemia, which play a direct or indirect role in the mecanisms of atherosclerosis. Dyslipidemia is mainly due to accumulation of circulating triglyceride-rich lipoproteins from the liver and bowel. The bowel has traditionally been seen as a passive organ, but current evidence confirms that it is an active organ subject to regulation by free fatty acids, insulin, incretins, and inflammation. Two new concepts have emerged: intestinal IR and overproduction of chylomicrons in hyperinsulinemic/IR states. A better understanding of intestinal IR may make the enterocyte a therapeutic target.
    Endocrinología y Nutrición 08/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: The pathophysiology of hypertriglyceridemia is complex hampering effective therapeutic strategies. Increased central parasympathetic nerve activity was shown to inhibit hepatic triglyceride (TG) excretion via modulation of liver stearyl-CoA desaturase (SCD)-1 activity in rodents. We evaluated the impact of 7-h lactate clamping on VLDL-TG homeostasis in humans. METHODS: Eight normolipidemic, male subjects were subjected to a continuous infusion of l-lactate (target concentration 3 mmol/L) or saline for 7 h in random order on two separate occasions. TG kinetics in very low density lipoproteins (VLDL1 and 2) were measured after a bolus injection of [1,1,2,3,3]-(2)H5-glycerol. Palmitic acid (16:0) and palmitoleic acid (16:1) in VLDL1 and VLDL2 were measured as a reflection of liver SCD1 activity. RESULTS: Plasma TG levels changed by 0.16 ± 0.09 mmol/L during lactate vs -0.15 ± 0.08 mmol/L during saline (P < 0.05). VLDL1 16:1/16:0 ratio increased to 1.2 ± 0.7 during lactate versus a decrease during saline by -1.5 ± 0.6 (p = 0.01). During lactate VLDL1-TG excretion was higher compared to saline (1604 [827-2870] versus 1285 [505-2155] μmol glycerol; p < 0.05), trending toward higher VLDL1-TG pool sizes during lactate (28%; p = 0.07 versus saline). CONCLUSIONS: In normolipidemic men, 7-h l-lactate clamp increases, rather than decreases SCD1 activity and hepatic TG secretion leading to elevated plasma TG levels. These conflicting data between human and rodents on central regulation of hepatic TG excretion illustrate that experimental findings on the role of the central nervous system in lipid metabolism should be interpreted with caution.
    Atherosclerosis 03/2013; 228(2). DOI:10.1016/j.atherosclerosis.2013.02.040 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Subcutaneous abdominal adipose tissue is one of the largest fat depots and contributes the major proportion of circulating nonesterified fatty acids (NEFA). Little is known about aspects of human adipose tissue metabolism in vivo other than lipolysis. Here we collated data from 331 experiments in 255 healthy volunteers over a 23-year period, in which subcutaneous abdominal adipose tissue metabolism was studied by measurements of arterio-venous differences after an overnight fast. NEFA and glycerol were released in a ratio of 2.7:1, different (P < 0.001) from the value of 3.0 that would indicate no fatty acid re-esterification. Fatty acid re-esterification was 10.2 ± 1.4%. Extraction of triacylglycerol (TG) (fractional extraction 5.7 ± 0.4%) indicated intravascular lipolysis by lipoprotein lipase, and this contributed 21 ± 3% of the glycerol released. Glucose uptake (fractional extraction 2.6 ± 0.3%) was partitioned around 20-25% for provision of glycerol 3-phosphate and 30% into lactate production. There was release of lactate and pyruvate, with extraction of the ketone bodies 3-hydroxybutyrate and acetoacetate, although these were small numerically compared with TG and glucose uptake. NEFA release (expressed per 100 g tissue) correlated inversely with measures of fat mass (e.g., with BMI, r(s) = -0.24, P < 0.001). We examined within-person variability. Systemic NEFA concentrations, NEFA release, fatty acid re-esterification, and adipose tissue blood flow were all more consistent within than between individuals. This picture of human adipose tissue metabolism in the fasted state should contribute to a greater understanding of adipose tissue physiology and pathophysiology.
    AJP Endocrinology and Metabolism 12/2011; 302(4):E468-75. DOI:10.1152/ajpendo.00527.2011 · 4.51 Impact Factor