Article

Two genetic pathways for age-related macular degeneration.

Department of Epidemiology and Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA.
Current Opinion in Genetics & Development (Impact Factor: 8.57). 07/2007; 17(3):228-33. DOI: 10.1016/j.gde.2007.04.004
Source: PubMed

ABSTRACT The discovery of strong associations of the His402 variant of complement factor H (CFH) and the change in the promoter region of HtrA serine peptidase 1 (HTRA1) with age-related macular degeneration (AMD) have altered our conception of the pathophysiology of this disease. The complement system has been placed at the center of a flurry of research interest, and a similar growth in attention to the serine proteases is not far behind. The specific role of these variants in causing AMD is unknown, but they will undoubtedly lead to a deeper understanding of the biological mechanisms and will point to new avenues for pharmacologic management. Furthermore, these variants will enable clinicians and investigators to identify people at high risk for this condition, thereby establishing the preconditions for preventing the disease.

1 Bookmark
 · 
55 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is considered the most common cause of blindness in the over-60 age group in developed countries. There are basically two forms of presentation: geographic (dry or atrophic) and wet (neovascular or exudative). Geographic atrophy accounts for approximately 85%-90% of ophthalmic frames and leads to a progressive degeneration of the retinal pigment epithelium and the photoreceptors. Wet AMD causes the highest percentage of central vision loss secondary to disease. This neovascular form involves an angiogenic process in which newly formed choroidal vessels invade the macular area. Today, intravitreal anti-angiogenic drugs attempt to block the angiogenic events and represent a major advance in the treatment of wet AMD. Currently, combination therapy for wet AMD includes different forms of radiation delivery. Epimacular brachytherapy (EMBT) seems to be a useful approach to be associated with current anti-vascular endothelial growth factor agents, presenting an acceptable efficacy and safety profile. However, at the present stage of research, the results of the clinical trials carried out to date are insufficient to justify extending routine use of EMBT for the treatment of wet AMD.
    Clinical ophthalmology (Auckland, N.Z.) 08/2014; 8:1661-70. DOI:10.2147/OPTH.S46068
  • [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is a leading cause of irreversible blindness. This study was done to characterize dry AMD-like changes in mouse retinal pigment epithelium (RPE) and retina after polyethylene glycol (PEG) treatment. We injected male C57BL/6 mice subretinally with PBS, 0.025, 0.25, 0.5 and 1.0 mg of PEG-400 and the animals were sacrificed on day 5. Eyes were harvested and processed for histological analysis. In all other experiments 0.5 mg PEG was injected and animals were sacrificed on days 1, 3, 5 or 14. Paraffin, 5 μm and plastic, 1 μm and 80 nm sections were used for further analysis. Subretinal injection of 0.5 mg PEG induced a 32% reduction of outer nuclear layer (ONL) thickness, 61% decrease of photoreceptor outer and inner segment length, 49% decrease of nuclear density in the ONL and 31% increase of RPE cell density by day 5 after injection. The maximum level of TUNEL positive nuclei in the ONL (6.8+1.99%) was detected at day 5 after PEG injection and co-localized with Casp3act. Histological signs of apoptosis were observed in the ONL by light or electron microscopy. Degeneration of RPE cells was found in PEG injected eyes. Gene expression data identified several genes reported to be involved in human AMD. C3, Cfi, Serping1, Mmp9, Htra1 and Lpl were up-regulated in PEG injected eyes compared to PBS controls. PEG leads to morphological and gene expression changes in RPE and retina consistent with dry AMD. This model will be useful to investigate dry AMD pathogenesis and treatment.
    Experimental Eye Research 10/2014; 127. DOI:10.1016/j.exer.2014.07.021 · 3.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IMPORTANCE Modifying levels of factors associated with age-related macular degeneration (AMD) may decrease the risk for visual impairment in older persons. OBJECTIVE To examine the relationships of markers of inflammation, oxidative stress, and endothelial dysfunction to the 20-year cumulative incidence of early AMD. DESIGN, SETTING, AND PARTICIPANTS This longitudinal population-based cohort study involved a random sample of 975 persons in the Beaver Dam Eye Study without signs of AMD who participated in the baseline examination in 1988-1990 and up to 4 follow-up examinations in 1993-1995, 1998-2000, 2003-2005, and 2008-2010. EXPOSURES Serum markers of inflammation (high-sensitivity C-reactive protein, tumor necrosis factor-α receptor 2, interleukin-6, and white blood cell count), oxidative stress (8-isoprostane and total carbonyl content), and endothelial dysfunction (soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1) were measured. Interactions with complement factor H (rs1061170), age-related maculopathy susceptibility 2 (rs10490924), complement component 3 (rs2230199), and complement component 2/complement factor B (rs4151667) were examined using multiplicative models. Age-related macular degeneration was assessed from fundus photographs. MAIN OUTCOMES AND MEASURES Early AMD defined by the presence of any size drusen and the presence of pigmentary abnormalities or by the presence of large-sized drusen (≥125-μm diameter) in the absence of late AMD. RESULTS The 20-year cumulative incidence of early AMD was 23.0%. Adjusting for age, sex, and other risk factors, high-sensitivity C-reactive protein (odds ratio comparing fourth with first quartile, 2.18; P = .005), tumor necrosis factor-α receptor 2 (odds ratio, 1.78; P = .04), and interleukin-6 (odds ratio, 1.78; P = .03) were associated with the incidence of early AMD. Increased incidence of early AMD was associated with soluble vascular cell adhesion molecule-1 (odds ratio per SD on the logarithmic scale, 1.21; P = .04). CONCLUSIONS AND RELEVANCE We found modest evidence of relationships of serum high-sensitivity C-reactive protein, tumor necrosis factor-α receptor 2, interleukin-6, and soluble vascular cell adhesion molecule-1 to the 20-year cumulative incidence of early AMD independent of age, smoking status, and other factors. It is not known whether these associations represent a cause and effect relationship or whether other unknown confounders accounted for the findings. Even if inflammatory processes are a cause of early AMD, it is not known whether interventions that reduce systemic inflammatory processes will reduce the incidence of early AMD.
    Jama Ophthalmology 01/2014; 132(4). DOI:10.1001/jamaophthalmol.2013.7671 · 3.83 Impact Factor