Article

Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems

National Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
Journal of Biotechnology (Impact Factor: 2.88). 07/2007; 130(2):107-13. DOI: 10.1016/j.jbiotec.2007.02.007
Source: PubMed

ABSTRACT The cationic polylactic acid (PLA) nanoparticle has emerged as a promising non-viral vector for gene delivery because of its biocompatibility and biodegradability. However, they are not capable of prolonging gene transfer and high transfection efficiency. In order to achieve prolonged delivery of cationic PLA/DNA complexes and higher transfection efficiency, in this study, we used copolymer methoxypolyethyleneglycol-PLA (MePEG-PLA), PLA and chitosan (CS) to prepare MePEG-PLA-CS NPs and PLA-CS NPs by a diafiltration method and prepared NPs/DNA complexes through the complex coacervation of nanoparticles with the pDNA. The object of our work is to evaluate the characterization and transfection efficiency of MePEG-PLA-CS versus PLA-CS NPs. The MePEG-PLA-CS NPs have a zeta potential of 15.7 mV at pH 7.4 and size under 100 nm, while the zeta potential of PLA-CS NPs was only 4.5 mV at pH 7.4. Electrophoretic analysis suggested that both MePEG-PLA-CS NPs and PLA-CS NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed MePEG-PLA-CS NPs exhibit a low cytotoxicity to normal human liver cells. The potential of PLA-CS NPs and MePEG-PLA-CS NPs as a non-viral gene delivery vector to transfer exogenous gene in vitro and in vivo were examined. The pDNA being carried by MePEG-PLA-CS NPs, PLA-CS NPs and lipofectamine could enter and express in COS7 cells. However, the transfection efficiency of MePEG-PLA-CS/DNA complexes was better than PLA-CS/DNA and lipofectamine/DNA complexes by inversion fluorescence microscope and flow cytometry. It was distinctively to find that the transfection activity of PEGylation of complexes was improved. The nanoparticles were also tested for their ability to transport across the gastrointestinal mucosa in vivo in mice. In vivo experiments showed obviously that MePEG-PLA-CS/DNA complexes mediated higher gene expression in stomach and intestine of BALB/C mice compared to PLA-CS/DNA and lipofectamine/DNA complexes. These results suggested that MePEG-PLA-CS NPs have favorable properties for non-viral gene delivery.

0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased interest in developing novel micro/nanohydrogel based formulations for delivering macromolecular therapeutics has led to multiple choices of biodegradable and biocompatible natural polymers. This interest is largely due to the availability of large number of highly pure recombinant proteins and peptides with tunable properties as well as RNA interference technology that are used in treating some of the deadly diseases that were difficult by the conventional approaches. The majority of marketed drugs that are now available are in the form of injectables that pose limited patient compliance and convenience. On the other hand, micro/nanotechnology based macromolecular delivery formulations offer many alternative routes of administration and advantages with improved patient compliance and efficient or targeted delivery of intracellular therapeutics to the site of action. This review outlines and critically evaluates the research findings on micro and nano-carrier polymeric hydrogels for the delivery of macromolecular therapeutics.
    Journal of Controlled Release 05/2014; 193:162-173. DOI:10.1016/j.jconrel.2014.05.014 · 7.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD) is characterized by disturbance of pro-inflammatory cytokines and anti-inflammatory cytokines. Previous studies have demonstrated the effect of anti-inflammatory cytokines, such as interleukin-10 (IL-10) or IL-4 on IBD, but their data were controversial. This study further investigated the effect of IL-4 (IL-4), IL-10 and their combination on treatment of trinitrobenzenesulfonic acid (TNBS)-induced murine colitis. pcDNA3.0 carrying murine IL-4 or IL-10 cDNA was encapsulated with LipofectAMINE 2000 and intraperitoneally injected into mice with TNBS-induced colitis. The levels of intestinal IL-4 and IL-10 mRNA were confirmed by quantitative-RT-PCR. Inflamed tissues were assessed by histology and expression of interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha and IL-6. The data confirmed that IL-4 or IL-10 over-expression was successfully induced in murine colon tissues after intraperitoneal injection. Injections of IL-4 or IL-10 significantly inhibited TNBS-induced colon tissue damage, disease activity index (DAI) and body weight loss compared to the control mice. Furthermore, expression of IFN-gamma, TNF-alpha and IL-6 was markedly blocked by injections of IL-4 or IL-10 plasmid. However, there was less therapeutic effect in mice injected with the combination of IL-4 and IL-10. These data suggest that intraperitoneal injection of IL-4 or IL-10 plasmid was a potential strategy in control of TNBS-induced murine colitis, but their combination had less effect.
    BMC Gastroenterology 12/2013; 13(1):165. DOI:10.1186/1471-230X-13-165 · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NaNoparticulate delivery systeMs for targetiNg delivery of Nucleic acids to the cells T his review illustrates the recent advances on the design of nanoparticulate delivery systems (vectors) for the delivery of nucleic acids to target cells. Literature data on structural and functional features of viral, non-viral, nanostructured, and multimodality vectors have been analyzed. The potential future applications of nanoparticles in medicine, including their possible disadvantages and side effects have been discussed. ВВЕДЕНИЕ В настоящее время одним из глав-ных государственных приоритетов Российской Федерации стало развитие исследований наноматериалов и нано-структур и создание на их основе нано-технологий для перевода на новый мировой уровень многих отраслей про-мышленности, сельского хозяйства и социальной сферы. Направления работ в этой области связаны с исполь-зованием процессов самоорганизации и самосборки нанообъектов, использо-ванием квантовых свойств нанострук-тур и применением методов нанокон-струирования в информационных, химических, биологических и меди-цинских технологиях. Особой отраслью нанотехнологий, исследования в кото-рой признаны приоритетными во всем мире, является нанобиотехнология, базирующаяся на использовании био-логических наномолекул. Важнейшими задачами нанобио-технологии являются развитие новых методов инструментального исследова-ния живых систем, диагностики и лече-ния заболеваний: ранней диагностики рака, инфекционных, генетических заболеваний, – создание биосовмести-мых наноматериалов и нанолекарств. Ключевой проблемой, от которой зави-сит успешное развитие нанобиотехно-логии, является создание эффективных нанотранспортных систем доставки лекарственных препаратов в клетки. Решение этой задачи позволит уве-личить продолжительность действия лекарств, минимизировать побочные эффекты и, как следствие, повысить эффективность терапевтического лече-ния и способствовать развитию эколо-гически чистых процессов. В настоящем обзоре суммированы сведения об использовании достиже-ний нанотехнологии для направленного транспорта нуклеиновых кислот (ДНК, РНК и коротких олигонуклеотидов) в клетки. Рассмотрены нанотранспорт-ные системы доставки. Обсуждаются перспективы использования нано-частиц в медицине, включая оцен-ку возможных побочных эффектов их применения. ПРИНЦИПЫ АДРЕСНОЙ ДОСТАВКИ НУКЛЕИНОВЫХ КИСЛОТ В ТКАНИ И КЛЕТКИ-МИШЕНИ Уникальные особенности нуклеино-вых кислот (НК), такие как способ-ность к самоорганизации, самовоспро-изведению, молекулярному узнаванию мишени и возможность интеграции в клеточный геном, лежат в основе ген-ной терапии – лечения наследствен-ных, мультифакториальных и инфек-ционных заболеваний путем введения экзогенного генетического материала в клетки пациентов с целью направлен-ного изменения генетических дефектов или придания отдельным клеточным органеллам новых свойств.