Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems

National Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
Journal of Biotechnology (Impact Factor: 2.87). 07/2007; 130(2):107-13. DOI: 10.1016/j.jbiotec.2007.02.007
Source: PubMed

ABSTRACT The cationic polylactic acid (PLA) nanoparticle has emerged as a promising non-viral vector for gene delivery because of its biocompatibility and biodegradability. However, they are not capable of prolonging gene transfer and high transfection efficiency. In order to achieve prolonged delivery of cationic PLA/DNA complexes and higher transfection efficiency, in this study, we used copolymer methoxypolyethyleneglycol-PLA (MePEG-PLA), PLA and chitosan (CS) to prepare MePEG-PLA-CS NPs and PLA-CS NPs by a diafiltration method and prepared NPs/DNA complexes through the complex coacervation of nanoparticles with the pDNA. The object of our work is to evaluate the characterization and transfection efficiency of MePEG-PLA-CS versus PLA-CS NPs. The MePEG-PLA-CS NPs have a zeta potential of 15.7 mV at pH 7.4 and size under 100 nm, while the zeta potential of PLA-CS NPs was only 4.5 mV at pH 7.4. Electrophoretic analysis suggested that both MePEG-PLA-CS NPs and PLA-CS NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed MePEG-PLA-CS NPs exhibit a low cytotoxicity to normal human liver cells. The potential of PLA-CS NPs and MePEG-PLA-CS NPs as a non-viral gene delivery vector to transfer exogenous gene in vitro and in vivo were examined. The pDNA being carried by MePEG-PLA-CS NPs, PLA-CS NPs and lipofectamine could enter and express in COS7 cells. However, the transfection efficiency of MePEG-PLA-CS/DNA complexes was better than PLA-CS/DNA and lipofectamine/DNA complexes by inversion fluorescence microscope and flow cytometry. It was distinctively to find that the transfection activity of PEGylation of complexes was improved. The nanoparticles were also tested for their ability to transport across the gastrointestinal mucosa in vivo in mice. In vivo experiments showed obviously that MePEG-PLA-CS/DNA complexes mediated higher gene expression in stomach and intestine of BALB/C mice compared to PLA-CS/DNA and lipofectamine/DNA complexes. These results suggested that MePEG-PLA-CS NPs have favorable properties for non-viral gene delivery.

9 Reads
  • Source
    • "These biopolymers also have low to xicity reactions with the body and their degradation rate can be easily controlled. Examp les of synthetic biodegradable polymers include Poly (lact ic acid), PLA[57] [58] [59] [60] [61] [62], Po ly (L-lactic acid), PLLA [63] [64] [65] [66], Po ly (lactic-co-glycolic acid), PLGA[67] [68] [69] [70], Poly-capro lactone PCL[71] [72] [73] [74] and Poly (g lycolic acid ), PGA [75] [76] [77] [78]. These biopolymers are generally poly-α-hydro x esters that de-esterifies in the body as the polymer degrades to simp le metabolites[79]. "
    01/2012; 2(6-6):218-240. DOI:10.5923/j.ajbe.20120206.02
  • Source
    • "However, an important problem with PLA is inadequate interaction between the polymers and cells, and these polymeric NPs can be easily displaced by serum proteins, which can lead to aggregation of NPs. Incorporation of additional excipients such as polyethylene glycol (PEG) has been attempted as a method to prevent the generation of an extremely acidic microenvironment inside the NPs on polymer degradation [9]. PEG has been used to coat the PLA NPs, and could often improve the solubility of the NPs, minimize their aggregation, reduce their interaction with proteins in the physiological fluid, and finally, produce a shielding effect that counteracts effective DNA complexation and steric stabilization to the gene vectors’ surfaces to improve transfection efficiency [10,11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH(2)-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.
    International Journal of Molecular Sciences 12/2011; 12(2):1371-88. DOI:10.3390/ijms12021371 · 2.86 Impact Factor
  • Source
    • "Prior to the in vivo study, it is important to know the size of the complexes as smaller size gene carrier has been shown to be capable of escaping the clearance effect of the reticuloendothelial system although it has longer retention time in the system circulation [42] [43] [44] [45]. Previous studies by Kaul and Amiji [46] also noted the importance of small size gene carrier in order to avoid the uptake by alveolar macrophages. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.
    BioMed Research International 06/2010; 2010:284840. DOI:10.1155/2010/284840 · 2.71 Impact Factor
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.