Article

Changes in network activity with the progression of Parkinson's disease.

Center for Neurosciences, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA.
Brain (Impact Factor: 10.23). 08/2007; 130(Pt 7):1834-46. DOI: 10.1093/brain/awm086
Source: PubMed

ABSTRACT Parkinson's disease (PD) is associated with abnormal activity in spatially distributed neural systems mediating the motor and cognitive manifestations of this disorder. Metabolic PET studies have demonstrated that this illness is characterized by a set of reproducible functional brain networks that correlate with these clinical features. The time at which these abnormalities appear is unknown, as is their relationship to concurrent clinical and dopaminergic indices of disease progression. In this longitudinal study, 15 early stage PD patients (age 58.0 +/- 10.2 years; Hoehn and Yahr Stage 1.2 +/- 0.3) were enrolled within 2 years of diagnosis. The subjects underwent multitracer PET imaging at baseline, 24 and 48 months. At each timepoint they were scanned with [18F]-fluorodeoxyglucose (FDG) to assess longitudinal changes in regional glucose utilization and in the expression of the PD-related motor (PDRP) and cognitive metabolic covariance patterns (PDCP). At each timepoint the subjects also underwent PET imaging with [18F]-fluoropropyl betaCIT (FP-CIT) to quantify longitudinal changes in caudate and putamen dopamine transporter (DAT) binding. Regional metabolic changes across the three timepoints were localized using statistical parametric mapping (SPM). Longitudinal changes in regional metabolism and network activity, caudate/putamen DAT binding, and Unified Parkinson's Disease Rating Scale (UPDRS) motor ratings were assessed using repeated measures analysis of variance (RMANOVA). Relationships between these measures of disease progression were assessed by computing within-subject correlation coefficients. We found that disease progression was associated with increasing metabolism in the subthalamic nucleus (STN) and internal globus pallidus (GPi) (P < 0.001), as well as in the dorsal pons and primary motor cortex (P < 0.0001). Advancing disease was also associated with declining metabolism in the prefrontal and inferior parietal regions (P < 0.001). PDRP expression was elevated at baseline relative to healthy control subjects (P < 0.04), and increased progressively over time (P < 0.0001). PDCP activity also increased with time (P < 0.0001). However, these changes in network activity were slower than for the PDRP (P < 0.04), reaching abnormal levels only at the final timepoint. Changes in PDRP activity, but not PDCP activity, correlated with concurrent declines in striatal DAT binding (P < 0.01) and increases in motor ratings (P < 0.005). Significant within-subject correlations (P < 0.01) were also evident between the latter two progression indices. The early stages of PD are associated with progressive increases and decreases in regional metabolism at key nodes of the motor and cognitive networks that characterize the illness. Potential disease-modifying therapies may alter the time course of one or both of these abnormal networks.

1 Follower
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past three decades, neuroimaging studies-including structural, functional and molecular modalities-have provided invaluable insights into the mechanisms underlying Parkinson disease (PD). Observations from multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical changes that affect receptor sites and neurotransmitter systems. Characterization of the neurobiological alterations that lead to phenotypic heterogeneity in patients with PD has considerably aided the in vivo investigation of aetiology and pathophysiology, and the identification of novel targets for pharmacological or surgical treatments, including cell therapy. Although PD is now considered to be very complex, no neuroimaging modalities are specifically recommended for routine use in clinical practice. However, conventional MRI and dopamine transporter imaging are commonly used as adjuvant tools in the differential diagnosis between PD and nondegenerative causes of parkinsonism. First-line neuroimaging tools that could have an impact on patient prognosis and treatment strategies remain elusive. This Review discusses the lessons learnt from decades of neuroimaging research in PD, and the promising new approaches with potential applicability to clinical practice.
    Nature Reviews Neurology 11/2014; 10(12). DOI:10.1038/nrneurol.2014.205 · 14.10 Impact Factor
  • International Journal for the Psychology of Religion 01/2014; 24(2):85-103. DOI:10.1080/10508619.2013.771964 · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injuries (TBI) are induced by sudden acceleration-deceleration and/or rotational forces acting on the brain. Diffuse axonal injury (DAI) has been identified as one of the chief underlying causes of morbidity and mortality in head trauma incidents. DAIs refer to microscopic white matter (WM) injuries as a result of shearing forces that induce pathological and anatomical changes within the brain, which potentially contribute to significant impairments later in life. These microscopic injuries are often unidentifiable by the conventional computed tomography (CT) and magnetic resonance (MR) scans employed by emergency departments to initially assess head trauma patients and, as a result, TBIs are incredibly difficult to diagnose. The impairments associated with TBI may be caused by secondary mechanisms that are initiated at the moment of injury, but often have delayed clinical presentations that are difficult to assess due to the initial misdiagnosis. As a result, the true consequences of these head injuries may go unnoticed at the time of injury and for many years thereafter. The purpose of this review is to investigate these consequences of TBI and their potential link to neurodegenerative disease (ND). This review will summarize the current epidemiological findings, the pathological similarities, and new neuroimaging techniques that may help delineate the relationship between TBI and ND. Lastly, this review will discuss future directions and propose new methods to overcome the limitations that are currently impeding research progress. It is imperative that improved techniques are developed to adequately and retrospectively assess TBI history in patients that may have been previously undiagnosed in order to increase the validity and reliability across future epidemiological studies. The authors introduce a new surveillance tool (Retrospective Screening of Traumatic Brain Injury Questionnaire, RESTBI) to address this concern.

Full-text (2 Sources)

Download
92 Downloads
Available from
Jun 1, 2014