Article

Impairments of heat shock protein expression and MAPK translocation in the central nervous system of follitropin receptor knockout mice.

Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, Zagreb, Croatia.
Experimental Gerontology (Impact Factor: 3.53). 08/2007; 42(7):619-28. DOI: 10.1016/j.exger.2007.03.001
Source: PubMed

ABSTRACT The central nervous system is exposed to the chronic oxidative stress during aging when the endogenous defence weakens and the load of reactive oxygen species enhances. Sex hormones and heat shock proteins (Hsps) participate in these responses to stress. Their regulation is disturbed in aging. We assessed the expression of Hsps in hippocampus and cortex of follitropin receptor knockout (FORKO) mice, known to exhibit gender and age-dependent imbalance in sex steroids and gonadotropins. These imbalances could contribute to an impaired regulation of Hsps thereby increasing the risk of developing neurodegenerative disorders. Our study shows that, in the hippocampus the expression of Hsp70 and Hsp25 was reduced in 20-month-old FORKO mice. However, in the cortex both Hsps were significantly down regulated only in elderly females. There is a well-established co-regulation between Hsps and mitogen-activated protein kinases (MAPKs). Significant, gender-specific impairments in the translocation of phosphorylated ERK and JNK were found in the CNS structures in aged FORKO mice. Our results suggest that hormonal imbalances lead to a disturbed subcellular distribution of activated MAPKs which contribute to the impairments of signal transduction networks maintaining normal physiological functions in the cortex and hippocampus that are associated with neurodegenerative changes in aging.

0 Followers
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and cross-talk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK cross-talk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
    Pharmacology [?] Therapeutics 11/2014; DOI:10.1016/j.pharmthera.2014.05.013 · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock proteins (HSPs) serve as molecular chaperones and endogenous cytoprotective factors. Two of the well-studied HSPs, HSP70, and HSP27 can be significantly induced in many areas of brain by a variety of stressors. A decrease in expression of brain HSPs has been documented in aged brain. Estrogen is well known as a neuroprotective hormone, and it has been reported that estrogen can regulate HSP70 and HSP27 expression in neuronal cells. In this study, the relationship between estrogen and heat stress-induced brain HSPs expression in young and aged ovariectomized (OVX) mice was investigated. Our results show that heat stress-induced levels of HSP70 proteins and mRNA transcripts was significantly lower in brain of aged (12 month) OVX mice, compared with young (2 month) OVX mice group. Estrogen supplementation (17β-estradiol 0.5 mg/kg for 7 days) restored heat stress-induced brain HSP70 expression and attenuated heat stress-induced brain DNA fragmentation, caspase 3 activation and mitochondrial leakage of cytochrome c and AIF in OVX mice. These results suggest that estrogen deficiency during aging down-regulates heat stress-induced brain HSP70 expression, which reveals a previously unknown link between estrogen deficiency and stress response elements.
    Experimental gerontology 05/2010; DOI:10.1016/j.exger.2009.10.006 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of estrogens in Alzheimer's disease (AD) involving β-amyloid (Aβ) generation and plaque formation was mostly tested in ovariectomized mice with or without APP mutations. The aim of the present study was to explore the abnormalities of neural cells in a novel mouse model of AD with chronic estrogen deficiency. These chimeric mice exhibit a total FSH-R knockout (FORKO) and carry two transgenes, one expressing the β-amyloid precursor protein (APPsw, Swedish mutation) and the other expressing presenilin-1 lacking exon 9 (PS1Δ9). The most prominent changes in the cerebral cortex and hippocampus of these hypoestrogenic mice were marked hypertrophy of both cortical neurons and astrocytes and an increased number of activated microglia. There were no significant differences in the number of Aβ plaques although they appeared less compacted and larger than those in APPsw/PS1Δ9 control mice. Similar glia abnormalities were obtained in wild-type primary cortical neural cultures treated with letrozole, an aromatase inhibitor. The concordance of results from APPsw/PS1Δ9 mice with or without FSH-R deletion and those with letrozole treatment in vitro (with and without Aβ treatment) of primary cortical/hippocampal cultures suggests the usefulness of these models to explore molecular mechanisms involved in microglia and astrocyte activation in hypoestrogenic states in the central nervous system.
    Journal of aging research 09/2011; 2011:251517. DOI:10.4061/2011/251517