Article

Impairments of heat shock protein expression and MAPK translocation in the central nervous system of follitropin receptor knockout mice.

Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, Zagreb, Croatia.
Experimental Gerontology (Impact Factor: 3.91). 08/2007; 42(7):619-28. DOI: 10.1016/j.exger.2007.03.001
Source: PubMed

ABSTRACT The central nervous system is exposed to the chronic oxidative stress during aging when the endogenous defence weakens and the load of reactive oxygen species enhances. Sex hormones and heat shock proteins (Hsps) participate in these responses to stress. Their regulation is disturbed in aging. We assessed the expression of Hsps in hippocampus and cortex of follitropin receptor knockout (FORKO) mice, known to exhibit gender and age-dependent imbalance in sex steroids and gonadotropins. These imbalances could contribute to an impaired regulation of Hsps thereby increasing the risk of developing neurodegenerative disorders. Our study shows that, in the hippocampus the expression of Hsp70 and Hsp25 was reduced in 20-month-old FORKO mice. However, in the cortex both Hsps were significantly down regulated only in elderly females. There is a well-established co-regulation between Hsps and mitogen-activated protein kinases (MAPKs). Significant, gender-specific impairments in the translocation of phosphorylated ERK and JNK were found in the CNS structures in aged FORKO mice. Our results suggest that hormonal imbalances lead to a disturbed subcellular distribution of activated MAPKs which contribute to the impairments of signal transduction networks maintaining normal physiological functions in the cortex and hippocampus that are associated with neurodegenerative changes in aging.

0 Bookmarks
 · 
51 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and cross-talk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK cross-talk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
    Pharmacology & Therapeutics. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 70-kDa family of heat shock proteins (HSP70), in particular, plays a vital role in cellular protection and has been detected in various tissues subject to stress. HSPA12B is the newest member of the HSP70 family but is distinct from the HSP70 family. In this study, we elucidated the dynamic expression changes and localization of HSPA12B in lipopolysaccharide (LPS)-induced neuroinflammatory processes in adult rats. HSPA12B expression was strongly induced in active microglial cells in inflamed spinal cord. In vitro studies indicated that the up-regulation of HSPA12B may be involved in the subsequent microglia activation following LPS challenge. The elevated HSPA12B expression was regulated by activation of MAPK-p38 and ERK1/2 pathways, less contribution of the SAPK/JNK pathway in microglial cells. Collectively, these results suggested HSPA12B may be important for host defense in microglia-mediated immune response. Understanding the cell signal pathway may provide a novel strategy against inflammatory and immune reaction in neuroinflammtion in CNS.
    Journal of the neurological sciences 07/2010; 294(1-2):29-37. · 2.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that the age-related decrease in the number of neurons in the hippocampus that leads to alterations in brain function, may be associated with an increase in apoptosis due to the reduced secretion of growth hormone (GH) and/or melatonin in old animals. In order to investigate this possibility, male Wistar rats of 22 months of age were divided into three groups. One group remained untreated and acted as the control group. The second was treated with growth hormone (hGH) for 10 weeks (2 mg/kg/d sc) and the third was subjected to melatonin treatment (1 mg/kg/d) in the drinking water for the same time. A group of 2-months-old male rats was used as young controls. All rats were killed by decapitation at more than 24 month of age and dentate gyri of the hippocampi were collected. Aging in the dentate gyrus was associated with an increase in apoptosis promoting markers (Bax, Bad and AIF) and with the reduction of some anti-apoptotic ones (XIAP, NIAP, Mcl-1). Expressions of sirtuin 1 and 2 (SIRT1 and 2) as well as levels of HSP 70 were decreased in the dentate gyrus of old rats. GH treatment was able to reduce the pro/anti-apoptotic ratio to levels observed in young animals and also to increase SIRT2. Melatonin reduced also expression of pro-apoptotic genes and proteins (Bax, Bad and AIF), and increased levels of myeloid cell leukemia-1 proteins and SIRT1. Both treatments were able to reduce apoptosis and to enhance survival markers in this part of the hippocampus.
    Biogerontology 07/2013; · 3.19 Impact Factor