Fluorescent Detection of Nitroaromatics and 2,3-Dimethyl 2,3-dinitrobutane (DMNB) by a Zinc Complex: (salophen)Zn

Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA.
Inorganic Chemistry (Impact Factor: 4.79). 06/2007; 46(11):4422-9. DOI: 10.1021/ic062012c
Source: PubMed

ABSTRACT Fluorescent sensors for the detection of chemical explosives are in great demand. It is shown herein that the fluorescence of ZnL* (H2L=N,N'-phenylene-bis-(3,5-di-tert-butylsalicylideneimine)) is quenched in solution by nitroaromatics and 2,3-dimethyl-2,3-dinitrobutane (DMNB), chemical signatures of explosives. The relationship between the structure and fluorescence of ZnL is explored, and crystal structures of three forms of ZnL(base), (base=ethanol, tetrahydrofuran, pyridine) are reported, with the base=ethanol structure exhibiting a four-centered hydrogen bonding array. Solution structures are monitored by 1H NMR and molecular weight determination, revealing a dimeric structure in poor donor solvents which converts to a monomeric structure in the presence of good donor solvents or added Lewis bases to form five-coordinate ZnL(base). Fluorescence wavelengths and quantum yields in solution are nearly insensitive to monomer-dimer interconversion, as well as to the identity of the Lewis base; in contrast, the emission wavelength in the solid state varies for different ZnL(base) due to pi-stacking. Nitroaromatics and DMNB are moderately efficient quenchers of ZnL*, with Stern-Volmer constants KSV=2-49 M-1 in acetonitrile solution.