Akt/cAMP-Responsive Element Binding Protein/Cyclin D1 Network: A Novel Target for Prostate Cancer Inhibition in Transgenic Adenocarcinoma of Mouse Prostate Model Mediated by Nexrutine, a Phellodendron Amurense Bark Extract

University of Texas at San Antonio, San Antonio, Texas, United States
Clinical Cancer Research (Impact Factor: 8.72). 06/2007; 13(9):2784-94. DOI: 10.1158/1078-0432.CCR-06-2974
Source: PubMed


Development of prostate cancer prevention strategies is an important priority to overcome high incidence, morbidity, and mortality. Recently, we showed that Nexrutine, an herbal extract, inhibits prostate cancer cell proliferation through modulation of Akt and cAMP-responsive element binding protein (CREB)-mediated signaling pathways. However, it is unknown if Nexrutine can be developed as a dietary supplement for the prevention of prostate cancer. In this study, we used the transgenic adenocarcinoma of mouse prostate (TRAMP) model to examine the ability of Nexrutine to protect TRAMP mice from developing prostate cancer.
Eight-week-old TRAMP mice were fed with pelleted diet containing 300 and 600 mg/kg Nexrutine for 20 weeks. Efficacy of Nexrutine was evaluated by magnetic resonance imaging at 18 and 28 weeks of progression and histologic analysis of prostate tumor or tissue at the termination of the experiment. Tumor tissue was analyzed for modulation of various signaling molecules.
We show that Nexrutine significantly suppressed palpable tumors and progression of cancer in the TRAMP model. Expression of total and phosphorylated Akt, CREB, and cyclin D1 was significantly reduced in prostate tissue from Nexrutine intervention group compared with tumors from control animals. Nexrutine also inhibited cyclin D1 transcriptional activity in androgen-independent PC-3 cells. Overexpression of kinase dead Akt mutant or phosphorylation-defective CREB inhibited cyclin D1 transcriptional activity.
The current study shows that Nexrutine-mediated targeting of Akt/CREB-induced activation of cyclin D1 prevents the progression of prostate cancer. Expression of CREB and phosphorylated CREB increased in human prostate tumors compared with normal tissue, suggesting their potential use as prognostic markers.

Download full-text


Available from: Addanki P Kumar, Mar 06, 2014
  • Source
    • "Treatment with NX remarkably suppressed COX- 2 and iNOS in DEN/2-AAF-induced animals, suggesting a plausible anti-tumor promotion role of NX in vivo. These results agree with earlier studies that have been shown NX to inhibit prostate, lung and skin cancer cell proliferation by modulation of COX-2 and iNOS inhibition [8] [12] [13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies suggested that plant-based dietary supplements can reduce the risk of liver cancer. Nexrutine (NX), an herbal extract from Phellodendronamurense, has been shown to have anti-inflammatory, anti-microbial and anti-tumor activities. In the present study, we have shown the anti-tumor potential of NX against Solt-Farber model with elimination of PH, rat liver tumor induced by diethylnitrosoamine (DEN) as carcinogen and 2-acetylaminofluorene (2-AAF) as co-carcinogen. The elucidation of mechanistic pathways was explored in human liver cancer cells. Dietary intake of NX significantly decreased the cell proliferation and inflammation, as well as increased apoptosis in the liver sections of DEN/2-AAF-treated rats. Moreover, NX (2.5-10 μg/ml) exposure significantly decreased the viability of liver cancer cells and modulated the levels of Bax and Bcl-2 proteins levels. NX treatment resulted in increased cytochrome-c release and cleavage of caspases 3 and 9. In addition, NX decreased the expression of CDK2, CDK4 and associated cyclins E1 and D1, while up-regulated the expression of p21, p27 and p53 expression. NX also enhanced phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK1/2, p38 and JNK1/2. Collectively, these findings suggested that NX-mediated protection against DEN/2-AAF-induced liver tumorigenesis involves decrease in cell proliferation and enhancement in apoptotic cell death of liver cancer cells.
    Toxicology Reports 11/2014; 2. DOI:10.1016/j.toxrep.2014.11.006
  • Source
    • "Tetrahydropalmatine, Reserpiline, and (+)-Corydaline were mainly extracted from Phellodendron amurense, Rauwolfia serpentina, and Corydalis yanhusuo, respectively. The literature had proved that the original plants of top 3 compounds had antitumor efficacy [59–62]. Therefore, we believed that the top 3 candidate compounds had the potential role in the inhibition of tumor growth. "
    [Show abstract] [Hide abstract]
    ABSTRACT: One has found an important cell cycle controller. This guard can decide the cell cycle toward proliferation or quiescence. Cyclin-dependent kinase 2 (CDK2) is a unique target among the CDK family in melanoma therapy. We attempted to find out TCM compounds from TCM Database@Taiwan that have the ability to inhibit the activity of CDK2 by systems biology. We selected Tetrahydropalmatine, Reserpiline, and (+)-Corydaline as the candidates by docking and screening results for further survey. We utilized support vector machine (SVM), multiple linear regression (MLR) models and Bayesian network for validation of predicted activity. By overall analysis of docking results, predicted activity, and molecular dynamics (MD) simulation, we could conclude that Tetrahydropalmatine, Reserpiline, and (+)-Corydaline had better binding affinity than the control. All of them had the ability to inhibit the activity of CDK2 and might have the opportunity to be applied in melanoma therapy.
    BioMed Research International 06/2014; 2014:798742. DOI:10.1155/2014/798742 · 1.58 Impact Factor
  • Source
    • "The compound, n-butylidenephthalide, isolated from the chloroform extract of Angelica siensis was found to upregulate the expression of p21 and p27 and increase apoptosis-associated proteins in DBTRG-05MG and RG2 cells and suppress the growth of subcutaneous rat and human brain tumors [26]. Nexrutine, a Phellodendron amurense bark methanol extract, was found to inhibit prostate cancer cell proliferation through modulation of AKT and cAMP-responsive element binding protein (CREB)-mediated signaling pathway, and that Nexrutine activates cyclin D1, which prevents the progression of prostate cancer [27]. In this study, it was observed that P. indica leaf and root aqueous extracts inhibited GBM8401 malignant glioma cells and HeLa cervical carcinoma cell growth, and migration. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pluchea indica (L.) Less. (Asteraceae) is a perennial shrub plant with anti-inflammatory and antioxidant medicinal properties. However, the anti-cancer properties of its aqueous extracts have not been studied. The aim of this study was to investigate the anti-proliferation, anti-migration, and pro-apoptotic properties of crude aqueous extracts of P. indica leaf and root on human malignant glioma cancer cells and human cervical cancer cells, and the underlying molecular mechanism. GBM8401 human glioma cells and HeLa cervical carcinoma cells were treated with various concentrations of crude aqueous extracts of P. indica leaf and root and cancer cell proliferation and viability were measured by cell growth curves, trypan blue exclusions, and the tetrazolium reduction assay. Effects of the crude aqueous extracts on focus formation, migration, and apoptosis of cancer cells were studied as well. The molecular mechanism that contributed to the anti-cancer activities of crude aqueous extracts of P. indica root was also examined using Western blotting analysis. Crude aqueous extracts of P. indica leaf and root suppressed proliferation, viability, and migration of GBM8401 and HeLa cells. Treatment with crude aqueous extracts of P. indica leaf and root for 48 hours resulted in a significant 75% and 70% inhibition on proliferation and viability of GBM8401 and HeLa cancer cells, respectively. Crude aqueous extracts of P. indica root inhibited focus formation and promoted apoptosis of HeLa cells. It was found that phosphorylated-p53 and p21 were induced in GBM8401 and HeLa cells treated with crude aqueous extracts of P. indica root. Expression of phosphorylated-AKT was decreased in HeLa cells treated with crude aqueous extracts of P. indica root. The in vitro anti-cancer effects of crude aqueous extracts of P. indica leaf and root indicate that it has sufficient potential to warrant further examination and development as a new anti-cancer agent.
    BMC Complementary and Alternative Medicine 12/2012; 12(1):265. DOI:10.1186/1472-6882-12-265 · 2.02 Impact Factor
Show more