Temperature-dependent electronic and vibrational structure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide room-temperature ionic liquid surface: a study with XPS, UPS, MIES, and HREELS.

Institut für Physik and Institut für Mikro- und Nanotechnologien, Technische Universität Ilmenau, P.O. Box 100565, D-98684 Ilmenau, Germany.
The Journal of Physical Chemistry B (Impact Factor: 3.38). 06/2007; 111(18):4801-6. DOI: 10.1021/jp067136p
Source: PubMed

ABSTRACT The near-surface structure of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide has been investigated as a function of temperature between 100 and 620 K. We used a combination of photoelectron spectroscopies (XPS and UPS), metastable induced electron spectroscopy (MIES), and high-resolution electron energy loss spectroscopy (HREELS). The valence band and HREELS spectra are interpreted on the basis of density functional theory (DFT) calculations. At room temperature, the most pronounced structures in the HREELS, UPS, and MIES spectra are related to the CF3 group in the anion. Spectral changes observed at 100 K are interpreted as a change of the molecular orientation at the outermost surface, when the temperature is lowered. At elevated temperatures, early volatilization, starting at 350 K, is observed under reduced pressure.

1 Bookmark
  • Analytical Sciences 01/2008; 24(10):1273-1277. · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The surface composition of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM] [PF6]) and 1-butyl-3-methylimidazolium dicyanamide ([BMIM] [DCA]) are studied by high-resolution Rutherford backscattering spectroscopy. Although [BMIM] [PF6] is almost stoichiometric up to the topmost molecular layer, considerable deviation from the theoretical stoichiometry is observed for [BMIM] [DCA] in a surface layer of ∼1.5nm thickness. Nitrogen is almost completely depleted in this layer while carbon is enhanced. In addition, there are oxygen impurities of ∼3×1014atoms/cm2 in this surface layer. With the help of X-ray photoelectron spectroscopy measurements it is concluded that the surface of [BMIM] [DCA] is covered by ∼1.7×1014molecules/cm2 of esters and/or carboxylic acids. These contaminant molecules have a preferred orientation, i.e. the carbonyl groups are on the surface of [BMIM] [DCA] and the alkyl chains are pointing towards vacuum. The origin of the contamination layer could be the surface segregation of bulk impurities.
    Surface Science 02/2010; 604(3):464-469. · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Investigations on the dynamic behavior of molecules in liquids at high spatial resolution are greatly desired because localized regions, such as solid-liquid interfaces or sites of reacting molecules, have assumed increasing importance with respect to improving material performance. In application to liquids, electron energy loss spectroscopy (EELS) observed with transmission electron microscopy (TEM) is a promising analytical technique with the appropriate resolutions. In this study, we obtained EELS spectra from an ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethyl-sulfonyl) imide (C2mim-TFSI), chosen as the sampled liquid, using monochromated scanning TEM (STEM). The molecular vibrational spectrum and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the liquid were investigated. The HOMO-LUMO gap measurement coincided with that obtained from the ultraviolet-visible spectrum. A shoulder in the spectrum observed ∼0.4 eV is believed to originate from the molecular vibration. From a separately performed infrared observation and first-principles calculations, we found that this shoulder coincided with the vibrational peak attributed to the C-H stretching vibration of the [C2mim(+)] cation. This study demonstrates that a vibrational peak for a liquid can be observed using monochromated STEM-EELS, and leads one to expect observations of chemical reactions or aids in the analysis of the dynamic behavior of molecules in liquid.
    Microscopy (Oxford, England). 07/2014;

Full-text (2 Sources)

Available from
May 23, 2014