A cytokine-mediated link between innate immunity, inflammation, and cancer.

Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Republic of China.
Journal of Clinical Investigation (Impact Factor: 13.77). 06/2007; 117(5):1175-83. DOI: 10.1172/JCI31537
Source: PubMed

ABSTRACT It has been established that cancer can be promoted and/or exacerbated by inflammation and infections. Indeed, chronic inflammation orchestrates a tumor-supporting microenvironment that is an indispensable participant in the neoplastic process. The mechanisms that link infection, innate immunity, inflammation, and cancer are being unraveled at a fast pace. Important components in this linkage are the cytokines produced by activated innate immune cells that stimulate tumor growth and progression. In addition, soluble mediators produced by cancer cells recruit and activate inflammatory cells, which further stimulate tumor progression. However, inflammatory cells also produce cytokines that can limit tumor growth. Here we provide an overview of the current understanding of the role of inflammation-induced cytokines in tumor initiation, promotion, and progression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-1, a β-galactoside-binding protein implicated in cancer cell immune privilege, was highly expressed in activated pancreatic stellate cells (PSCs). This study was designed to investigate the relationship between PSC-derived galectin-1 and tumor immunity in pancreatic cancer. Isolated PSCs were identified as normal pancreas cells (hNPSCs) or pancreatic cancer cells (hCaPSCs) by immunohistochemical staining for α-SMA and vimentin, and galectin-1 expression was evaluated by Western blotting and quantitative RT-PCR. Apoptosis, caspase activity, and cytokine production (IL-6, IL-10, TNF-β, and IFN-γ) of T cells co-cultured with PSCs were evaluated, and immunohistochemical staining of galectin-1 was correlated with CD3 and clinicopathological variables in 66 pancreatic cancer and 10 normal pancreatic tissue samples. hCaPSCs exhibited higher galectin-1 expression than did hNPSCs, and hCaPSCs induced higher levels of apoptosis in T cells following co-culture. hCaPSCs activated caspase-9 and caspase-3 in the mitochondrial apoptotic pathway and stimulated secretion of Th2 cytokines (IL-6 and IL-10) but decreased secretion of Th1 cytokines (TNF-β and IFN-γ), compared with hNPSCs. Immunohistochemical staining indicated that galectin-1 and CD3 were more highly expressed in pancreatic cancer tissue. Galectin-1 expression was highest in poorly differentiated pancreatic cancer cells and lowest in well-differentiated pancreatic cancer cells and was associated with tumor size, lymph node metastasis, differentiation, and UICC stage. However, CD3 expression showed the opposite trend and was highest in well-differentiated pancreatic cancer cells and was associated with tumor differentiation and UICC stage. High expression of galectin-1 was associated with short survival, as was low expression of CD3. hCaPSC-derived galectin-1 enhanced apoptosis and anergy of T cells in pancreatic cancer, which contributes to the immune escape of pancreatic cancer cells.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study aimed to determine changes in laboratory data for cancer patients receiving Korean medicine (KM) care, with a focus on patients' functional status, cancer-coagulation factors and cancer immunity. We conducted an observational study of various cancer patients in all stages admitted to the East-West Cancer Center (EWCC), Dunsan Korean Hospital of Daejeon University, from Mar. 2011 to Aug. 2011. All patients were under the center's multi-modality Korean-medicine-based inpatient cancer care program. The hospitalization stay at EWCC ranged from 9 to 34 days. A total of 80 patients were followed in their routine hematologic laboratory screenings performed before and after hospitalization. Patients were divided into three groups depending on the status of their treatment: prevention of recurrence and metastasis group, Korean medicine (KM) treatment only group, and combination of conventional and KM treatment group. The lab reports included natural killer (NK) cell count (CD16 + CD56), fibrinogen, white blood cell (WBC), lymphocytes, monocytes, neutrophil, red blood cell (RBC), hemoglobin, platelet, Erythrocyte Sedimentation Rate (ESR), and Eastern Cooperative Oncology Group (ECOG) performance status. With a Focus on patients' functional status, cancer-coagulation factors and cancer immunity, emphasis was placed on the NK cell count, fibrinogen count, and ECOG scores. Data generally revealed decreased fibrinogen count, fluctuating NK cell count and decreased ECOG, meaning improved performance status in all groups. The KM treatment only group showed the largest decrease in mean fibrinogen count and the largest increase in mean NK cell count. However, the group's ECOG score showed the smallest decrease, which may be due to the concentration of late-cancer-stage patients in that particular group. Multi-modality KM inpatient care may have positive effect on lowering the cancer coagulation factor fibrinogen, but its correlation with the change in the NK cell count is not clear.


Available from