Article

An improved method for three-dimensional reconstruction of protein expression patterns in intact mouse and chicken embryos and organs.

Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark.
Journal of Histochemistry and Cytochemistry (Impact Factor: 2.26). 10/2007; 55(9):925-30. DOI:10.1369/jhc.7A7226.2007
Source: PubMed

ABSTRACT We have developed a wholemount immunofluorescence protocol for the simultaneous detection of up to three proteins in mouse and chicken embryos. Combined with Murray's clearing reagent (BABB) and microscope objectives with long working ranges and high numerical apertures mounted on a confocal microscope, cellular resolution can be obtained in depths offering the possibility of examining expression patterns in entire organs or embryos. Three-dimensional projections of the optical confocal sections can be computed with computer software allowing rotation around any axis. The protocol is robust and we find that most antibodies working on tissue sections also work with this protocol. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.

0 0
 · 
0 Bookmarks
 · 
29 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In pregnant women, the diabetic condition results in a three- to fivefold increased risk for fetal cardiac malformations as a result of elevated glucose concentrations and the resultant osmotic stress in the developing embryo and fetus. Heart development before septation in the chick embryo was studied under two hyperglycemic conditions. Pulsed hyperglycemia induced by daily administration of glucose during 3 days of development caused daily spikes in plasma glucose concentration. In a second model, sustained hyperglycemia was induced with a single injection of glucose into the yolk on day 0. The sustained model raised the average plasma glucose concentration from 70 mg/dL to 180 mg/dL and led to decreased gene expression of glucose transporter GLUT1. Both models of hyperglycemia reduced embryo size, increased mortality, and delayed development. Within the heart outflow tract, reduced proliferation of myocardial and endocardial cells resulted from the sustained hyperglycemia and hyperosmolarity. The cell cycle inhibitor p21 was significantly increased, whereas cyclin D1, a cell cycle promoter, decreased in sustained hyperglycemia compared with controls. The evidence suggests that hyperglycemia-induced developmental delays are associated with slowed cell cycle progression, leading to reduced cellular proliferation. The suppression of critical developmental steps may underlie the cardiac defects observed during late gestation under hyperglycemic conditions.
    Diabetes 11/2012; · 7.90 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The SRY-box containing transcription factor Sox17 is required for endoderm formation and vascular morphogenesis during embryonic development. In the lung, Sox17 is expressed in mesenchymal progenitors of the embryonic pulmonary vasculature and is restricted to vascular endothelial cells in the mature lung. Conditional deletion of Sox17 in splanchnic mesenchyme-derivatives using Dermo1-Cre resulted in substantial loss of Sox17 from developing pulmonary vascular endothelial cells and caused pulmonary vascular abnormalities before birth, including pulmonary vein varices, enlarged arteries, and decreased perfusion of the microvasculature. While survival of Dermo1-Cre;Sox17Δ/Δ mice (herein termed Sox17Δ/Δ) was unaffected at E18.5, most Sox17Δ/Δ mice died by 3 weeks of age. After birth, the density of the pulmonary microvasculature was decreased in association with alveolar simplification, biventricular cardiac hypertrophy, and valvular regurgitation. The severity of the postnatal cardiac phenotype was correlated with the severity of pulmonary vasculature abnormalities. Sox17 is required for normal formation of the pulmonary vasculature and postnatal cardiovascular homeostasis.
    Developmental Biology 01/2014; · 3.87 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Endothelium in embryonic hematopoietic tissues generates hematopoietic stem/progenitor cells; however, it is unknown how its unique potential is specified. We show that transcription factor Scl/Tal1 is essential for both establishing the hematopoietic transcriptional program in hemogenic endothelium and preventing its misspecification to a cardiomyogenic fate. Scl(-/-) embryos activated a cardiac transcriptional program in yolk sac endothelium, leading to the emergence of CD31+Pdgfrα+ cardiogenic precursors that generated spontaneously beating cardiomyocytes. Ectopic cardiogenesis was also observed in Scl(-/-) hearts, where the disorganized endocardium precociously differentiated into cardiomyocytes. Induction of mosaic deletion of Scl in Scl(fl/fl)Rosa26Cre-ER(T2) embryos revealed a cell-intrinsic, temporal requirement for Scl to prevent cardiomyogenesis from endothelium. Scl(-/-) endothelium also upregulated the expression of Wnt antagonists, which promoted rapid cardiomyocyte differentiation of ectopic cardiogenic cells. These results reveal unexpected plasticity in embryonic endothelium such that loss of a single master regulator can induce ectopic cardiomyogenesis from endothelial cells.
    Cell 08/2012; 150(3):590-605. · 31.96 Impact Factor

Full-text (2 Sources)

View
1 Download
Available from
Nov 26, 2013