Article

Concerted action of leptin in regulation of fatty acid oxidation in skeletal muscle and liver.

Diabetes and Nutrition Research Laboratory, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
Experimental and Clinical Endocrinology & Diabetes (Impact Factor: 1.56). 05/2007; 115(4):244-51. DOI: 10.1055/s-2007-956166
Source: PubMed

ABSTRACT Central action of leptin on food intake and energy expenditure is integrated with leptin's peripheral action modulating the fatty acid and glucose metabolism and preventing the accumulation of lipids in nonadipose tissues. However, exact mechanism(s) of the leptin's action in the peripheral tissues has not yet been fully elucidated. Therefore, we investigated the effect of a single intravenous injection of leptin on palmitoyl-CoA and palmitoyl-carnitine oxidation rate in liver and skeletal muscle followed by measurements of the carnitine-palmitoyl transferase 1 (CPT1) activity and activities of ss-oxidation enzymes in mitochondria (acyl-CoA dehydrogenase) and in peroxisomes (acyl-CoA oxidase) of rats. Animals were euthanized and tissues and serum harvested 15 min, 1 hour, 3 hours and 6 hours after leptin administration. Intravenous leptin injection increased mitochondrial palmitoyl-CoA oxidation rate in both liver (95%; P<0.025) and skeletal muscle (2.7-fold; P<0.05). This was paralleled by lowering hepatic (-156%; P<0.001) and skeletal muscle (-191%; P<0.001) triglyceride content. Leptin-induced elevation of palmitoyl-CoA oxidation rate in liver was paralleled by increased CPT1 activity (52%; P<0.05) and ss-oxidation capacity (52%; P<0.05). Lack of the leptin's effect on the CPT1-activity in muscle (20%; p=0.09) suggests the existence of an alternative pathway for increasing the palmitoyl-CoA-oxidation rate bypassing the CPT1 regulatory step. Interestingly, leptin stimulated the overall ss-oxidation capacity in muscle by 69% (P=0.027). This may indicate to an involvement of mitochondrial acyl-CoA dehydrogenases as well as of peroxisomal fat catabolism. Taken together, we showed that leptin acutely increases palmitoyl-CoA oxidation rate in liver and in skeletal muscle, which was associated with tissue specific effect on the CPT1 activity as well as on the downstream enzymes of fatty acid oxidation pathways in rat mitochondria and peroxisomes. Tangible evidence for the leptin-induced increase of fatty acid catabolism was provided by a lowered skeletal muscle and hepatic lipid deposition.

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that rats offered choice diet (chow, 30% sucrose solution, lard) increase body fat by 130% within 3weeks. We tested the effects of choice diet on the development of leptin resistance in rats. Intraperitoneal injection of 2mg/kg leptin inhibited 14h food intake and weight gain of all rats after 2days and 4days of diet. On day 8, choice rats were leptin insensitive and by day 16 they were resistant. Chow rats remained leptin responsive. A second study showed that on day 16 choice, but not chow rats, were centrally leptin resistant (1.5μg leptin, 3rd ventricle). In both studies, rats were switched back to chow only after approximately 3weeks on choice diet and were leptin responsive after 4days. A third study showed that carcass fat was reduced by 30% 4days after switching back to chow. A final experiment showed that leptin responsive chow rats, but not leptin resistant choice rats, increased energy expenditure by 12% during the 2.6h after a central leptin injection. Thus, choice diet rapidly induces leptin resistance, but leptin responsiveness is quickly restored when choice is replaced with chow. This rapid onset and reversal of leptin resistance may be associated with changes in either substrate metabolism or adiposity.
    Appetite 09/2012; · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Data from studies in patients with nonalcoholic steatohepatitis (NASH) suggest an increased hepatic fatty acid oxidation. We have previously shown higher fasting plasma bile acid concentrations in patients with NASH. In-vivo and in-vitro studies suggest that bile acids by binding to peroxisome proliferator-activated receptor α activate fibroblast growth factor 21 (FGF21) and increase hepatic fatty acid oxidation. Plasma bile acid levels were quantified in healthy controls (n=38) and patients with biopsy-proven NASH (n=36). Plasma concentration of fatty acids, β-hydroxybutyrate, insulin, glucose, leptin, alanine aminotransferase, FGF21, and 8-hydroxydeoxyguanosine, a measure of oxidative stress, were measured in 16 healthy controls and 10 patients with NASH in the fasted state and in response to 3 h of infusion of intralipid. In a subgroup of these patients (n=6 each), plasma ceramide subspecies were quantified. Fasting plasma bile acids, FGF21, and leptin concentrations were significantly higher in patients with NASH. In response to intralipid infusion there was an increase in plasma β-hydroxybutyrate and free fatty acid levels in both controls and NASH; however, the ratio of β-hydroxybutyrate/free fatty acid was higher in NASH (P=0.02). Plasma FGF21 concentration increased in response to intralipid in patients with NASH only (P<0.01). Plasma leptin, insulin, glucose, and alanine transferase concentrations did not change in either group after infusion of intralipid. Increase in total ceramides in response to intralipid was greater in NASH. Elevated bile acids and FGF21 may be responsible for the higher hepatic fatty acid oxidation in NASH.
    European journal of gastroenterology & hepatology 03/2011; 23(5):382-8. · 1.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulation of adipose hormones in obesity has been associated with the hastened development of metabolic syndrome and associated chronic disease sequalae including cardiovascular disease and type 2 diabetes mellitus. This study aims to identify common biochemical and anthropometric markers that impact adipose hormones, including adiponectin and leptin. Based on previous literature, it was hypothesized that these would be adversely impacted by liver function parameters and adiponectin levels would be positively correlated with phospholipid omega-3 fatty acids. Forty non-diabetic adult subjects (body mass index (BMI) ≥ 25.0kg/m2) were recruited. Fasting plasma samples were taken to assess adipokine levels, glucose metabolism, electrolytes, liver enzymes, and blood lipids. Basic anthropometric measurements were also recorded. Adiponectin levels were positively correlated with HDL cholesterol and negatively correlated with anthropometric measures, insulin, liver enzymes, triglycerides, and VLDL cholesterol but not BMI. Conversely, plasma leptin levels were positively correlated with anthropometric measures, C-reactive protein, HDL cholesterol, and plasma phospholipid proportions of omega-3 alpha linoleic acid, but inversely correlated with creatinine levels. These results support other data regarding correlations between adiponectin and relative adipose distribution. Correlations with specific liver enzymes may indicate that adiponectin levels are tied to fatty acid deposition in the liver; however, liver/kidney damage though further mechanistic clarification is required. Leptin levels were associated with measures of adiposity but not liver enzymes. Each of these variables, along with blood lipids, may serve as potential future therapeutic targets for the prevention and management of obesity and related co-morbidities.
    Nutrition Research. 01/2014;