Article

Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model

Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
Science (Impact Factor: 31.48). 06/2007; 316(5825):750-4. DOI: 10.1126/science.1141736
Source: PubMed

ABSTRACT Many potential treatments for Alzheimer's disease target amyloid-beta peptides (Abeta), which are widely presumed to cause the disease. The microtubule-associated protein tau is also involved in the disease, but it is unclear whether treatments aimed at tau could block Abeta-induced cognitive impairments. Here, we found that reducing endogenous tau levels prevented behavioral deficits in transgenic mice expressing human amyloid precursor protein, without altering their high Abeta levels. Tau reduction also protected both transgenic and nontransgenic mice against excitotoxicity. Thus, tau reduction can block Abeta- and excitotoxin-induced neuronal dysfunction and may represent an effective strategy for treating Alzheimer's disease and related conditions.

0 Bookmarks
 · 
294 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is one of the most sig-nificant neurodegenerative disorders in terms of both severity and cost. Despite being defined over a century ago, there is currently no cure to this disease that affects an increasing elderly population. The amyloid precursor protein (APP) has been shown to play an important role in AD progression. The amyloid β peptide (Aβ), which accumulates in senile plaques, a central etio-logical AD factor, is a proteolytic product from APP by the enzymatic action of β-and γ-secre-tases. In this review, we summarize the current knowledge of the processing and physiological functions of APP, and the involvement of APP and Aβ in AD.
    Advances in Alzheimer's Disease 01/2013; 2(2):60-65. DOI:10.4236/aad.2013.22008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The progression of many neurodegenerative diseases is thought to be driven by the template-directed misfolding, seeded aggregation and cell-cell transmission of characteristic disease-related proteins, leading to the sequential dissemination of pathological protein aggregates. Recent evidence strongly suggests that the anatomical connections made by neurons - in addition to the intrinsic characteristics of neurons, such as morphology and gene expression profile - determine whether they are vulnerable to degeneration in these disorders. Notably, this common pathogenic principle opens up opportunities for pursuing novel targets for therapeutic interventions for these neurodegenerative disorders. We review recent evidence that supports the notion of neuron-neuron protein propagation, with a focus on neuropathological and positron emission tomography imaging studies in humans.
    Nature reviews. Neuroscience 02/2015; 16(2):109-20. DOI:10.1038/nrn3887 · 31.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.
    Acta Neuropathologica 01/2015; 129(3). DOI:10.1007/s00401-014-1379-7 · 9.78 Impact Factor

Full-text (2 Sources)

Download
1,703 Downloads
Available from
Jun 6, 2014