Article

Zonisamide decreases ethanol intake in rats and mice.

Division of Psychiatry, Boston University School of Medicine, Boson, MA 02118, USA.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.82). 06/2007; 87(1):65-72. DOI: 10.1016/j.pbb.2007.04.001
Source: PubMed

ABSTRACT Several anticonvulsant agents, including topiramate and valproate, have been found to reduce alcohol consumption in rodent models of drinking. The question of whether the novel anticonvulsant agent, zonisamide, shares similar actions in either mice or rats was investigated in the present experiments. In an initial experiment, the consumption of a 10% ethanol-5% sucrose solution, available for one hour, by Wistar rats treated with lactose, topiramate, or zonisamide was determined. In a second experiment, the intake of a 10% ethanol/water solution, accessible for two hours, by C57BL/B6N mice treated with either zonisamide or vehicle was assessed. In the rat, 50 mg/kg (PO) doses of either topiramate or zonisamide produced significant, but moderate decreases in ethanol/sucrose intake. The administration of a 50 mg/kg (IP) dose of zonisamide to mice resulted in a marked lowering in ethanol consumption. These results provide evidence that zonisamide administration will decrease ethanol consumption by both mice and rats in limited access models of drinking, and might, like topiramate, be useful as a medication for alcoholism.

Download full-text

Full-text

Available from: Domenic A Ciraulo, Jun 30, 2015
0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR) complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA) subunit variant and kainate (GRIK) subunit mRNA expression were studied in the orbitofrontal cortex (OFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC) of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations (BEC) averaged over the 6 months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and BEC averaged over the 6 months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.
    Frontiers in Psychiatry 01/2011; 2:72. DOI:10.3389/fpsyt.2011.00072
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compounds with anti-glutamatergic properties currently in clinical use for various indications (eg Alzheimer's disease, epilepsy, psychosis, mood disorders) have potential utility as novel treatments for alcoholism. Enhanced sensitivity to certain acute intoxicating effects (ataxia, sedative) of alcohol may be one mechanism by which anti-glutamatergic drugs modulate alcohol use. We examined the effects of six compounds (memantine, dextromethorphan, haloperidol, lamotrigine, oxcarbazepine, and topiramate) on sensitivity to acute intoxicating effects of ethanol (ataxia, hypothermia, sedation/hypnosis) in C57BL/6J mice. Analysis of topiramate was extended to determine the influence of genetic background (by comparison of the 129S1, BALB/cJ, C57BL/6J, DBA/2J inbred strains) and prior stress history (by chronic exposure of C57BL/6J to swim stress) on topiramate's effects on ethanol-induced sedation/hypnosis. Results showed that one N-methyl-D-aspartate receptor (NMDAR) antagonist, memantine, but not another, dextromethorphan, potentiated the ataxic but not hypothermic or sedative/hypnotic effects of ethanol. Haloperidol increased ethanol-induced ataxia and sedation/hypnosis to a similar extent as the prototypical NMDAR antagonist MK-801. Of the anticonvulsants tested, lamotrigine accentuated ethanol-induced sedation/hypnosis, whereas oxcarbazepine was without effect. Topiramate was without effect per se under baseline conditions in C57BL/6J, but had a synergistic effect with MK-801 on ethanol-induced sedation/hypnosis. Comparing inbred strains, topiramate was found to significantly potentiate ethanol's sedative/hypnotic effects in BALB/cJ, but not 129S1, C57BL/6J, or DBA/2J strains. Topiramate also increased ethanol-induced sedation/hypnosis in C57BL/6J after exposure to chronic stress exposure. Current data demonstrate that with the exception of MK-801 and haloperidol, the compounds tested had either no significant or assay-selective effects on sensitivity to acute ethanol under baseline conditions in C57BL/6J. However, significant effects of topiramate were revealed as a function of co-treatment with an NMDAR blocker, genetic background, or prior stress history. These findings raise the possibility that topiramate and possibly other anti-glutamatergic drugs could promote the acute intoxicating effects of ethanol in specific subpopulations defined by genetics or life history.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 11/2008; 34(6):1454-66. DOI:10.1038/npp.2008.182 · 7.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since 1994, when naltrexone (Revia) was approved by the FDA for the treatment of alcoholism, only 2 other drugs (Campral and Topamax have been approved for alcoholism treatment. However, various experimental drugs, including antiepileptic medications, have been tested in both animal models and in humans with some promising results. The purpose of this project was to study the effect of the novel neuromodulator carisbamate, which is in development for epilepsy treatment, on alcohol intake in selectively bred alcohol-preferring rats. Male alcohol-preferring inbred P rats were allowed to freely drink water or alcohol (10%, v/v) using a 2-bottle choice procedure. After stable baselines for alcohol and water intakes were established, the acute effects of oral carisbamate (0, 10, 30, 45, 60, and 90 mg/kg) were assessed. Then, the chronic effect of the compound (60 mg/kg/day for 14 consecutive days) on alcohol intake was assessed in a separate group of male P rats. In another set of experiments, the effects of carisbamate and naltrexone on alcohol withdrawal-induced elevated drinking of alcohol, an index of craving, were compared. Rats were withdrawn from alcohol for 24 hours and were given vehicle, 20 mg/kg naltrexone or 60 mg/kg carisbamate 30 minutes before re-exposure to alcohol. Alcohol and water intake was measured 6 hours after alcohol re-exposure. To determine the effects of carisbamate on saccharin preference, rats were put on a 2-bottle choice of water versus a solution of 2% saccharin. Then, the effect of the highest dose of carisbamate (90 mg/kg) and naltrexone (20 mg/kg) and the vehicle on saccharin preference was determined. Our results showed that there was a selective dose-dependent reduction in alcohol intake and preference in the alcohol-preferring P rat after an acute oral administration of carisbamate. There were no significant effects on food or water intake. Chronic administration of carisbamate significantly reduced alcohol intake and preference initially, but partial tolerance developed after the 10th treatment. The degree of tolerance development was less than that observed for naltrexone. Acute administration of carisbamate was more effective than naltrexone in reducing enhanced alcohol intake after a period of alcohol deprivation. Compared with control vehicle neither carisbamate nor naltrexone had a significant effect on saccharin intake and preference. The novel neuromodulator compound carisbamate has a favorable profile of effects on alcohol intake and related measures and should be considered for testing on human alcoholics.
    Alcoholism Clinical and Experimental Research 05/2009; 33(8):1366-73. DOI:10.1111/j.1530-0277.2009.00966.x · 3.31 Impact Factor